

USER GUIDE

For use with:

- Acutime 720 multi-GNSS L1+L5 smart antenna (P/N 121224-XX)
- Acutime 720 Starter Kit (P/N 123889-XX)

Firmware Version 1.00 and later

Version 1.00 Revision A03 March 2025 P/N: 121224-90

Legal Notices

Corporate Office

Protempis

USA

www.protempis.com

Email: support@protempis.com

© 2022, Protempis All rights reserved.

Protempis, and the Globe & Satellite logo are trademarks of Protempis registered in the United States and in other countries.

All other trademarks are the property of their respective owners.

Release Notice

This is the August 2022 release (Revision A01) of the Acutime 720 documentation.

The Australian Consumer Law

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and for compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

Protempis' warranty (set out below) is in addition to any mandatory rights and remedies that you may have under the Australian Consumer Law.

LIMITED WARRANTY TERMS AND CONDITIONS

Product Limited Warranty

Subject to the following terms and conditions, Protempis Inc. ("Protempis") warrants that for a period of one (1) year from date of purchase this Protempis product (the "Product") will substantially conform to Protempis's publicly available specifications for the Product and that the hardware and any storage media components of the Product will be substantially free from defects in materials and workmanship.

Product Software

Product software, whether built into hardware circuitry as firmware, provided as a standalone computer software product, embedded in flash memory, or stored on magnetic or other media, is licensed solely for use with or as an integral part of the Product and is not sold. If accompanied by a separate end user license agreement ("EULA"), use of any such software will be subject to the terms of such end user license agreement (including any differing limited warranty terms, exclusions, and limitations), which shall control over the terms and conditions set forth herein.

Except for the limited license rights expressly provided herein, Protempis and its suppliers have and will retain all rights, title and interest (including, without limitation, all patent, copyright, trademark, trade secret and other intellectual property rights) in and to the Product Software and all copies, modifications and derivative works thereof (including any changes which incorporate any of your ideas, feedback or suggestions).

You shall not (and shall not allow any third party to): (a) decompile, disassemble, or otherwise reverse engineer the Product Software or attempt to reconstruct or discover any source code, underlying ideas, algorithms, file formats or programming interfaces of the Product Software by any means whatsoever (except and only to the extent that applicable law prohibits or restricts reverse engineering restrictions); (b) distribute, sell, sublicense, rent, lease, or use the Product Software (or any portion thereof) for time sharing, hosting, service provider, or like purposes; (c) remove any product identification, proprietary, copyright, or other notices contained in the Product Software; (d) modify any part of the Product Software, create a derivative work of any part of the Product Software, or incorporate the Product Software into or with other software, except to the extent expressly authorized in writing by Protempis; (e) attempt to circumvent or disable the security key mechanism that protects the Product Software against unauthorized use (except and only to the extent that applicable law prohibits or restricts such restrictions); or (f) publicly disseminate performance information or analysis (including, without limitation, benchmarks) from any source relating to the Product Software. If the Product Software has been provided to you as embedded in any hardware device, you are not licensed to separate the Product Software from the hardware device. If the Product Software has been provided to you separately from a hardware device but is intended to be loaded onto a hardware device specified by Protempis (such as a firmware update), your license is limited to loading the Product Software on the device specified by Protempis, and for no other use.

Software Fixes

During the limited warranty period you will be entitled to receive such Fixes to the Product software that Protempis releases and makes commercially available and for which it does not charge separately, subject to the procedures for delivery to purchasers of Protempis products generally. If you have purchased the Product from a Protempis authorized dealer rather than from Protempis directly, Protempis may, at its option, forward the software Fix to the Protempis authorized dealer for final distribution to you. Minor Updates, Major Upgrades, new products, or substantially new software releases, as identified by Protempis, are expressly excluded from this update process and limited warranty. Receipt of software Fixes or other enhancements shall not serve to extend the limited warranty period. For purposes of this warranty the following definitions shall apply: (1) "Fix(es)" means an error correction or other update created to fix a previous software version that does not substantially conform to its Protempis specifications; (2) "Minor Update" occurs when enhancements are made to current features in a software program; and (3) "Major Upgrade" occurs when significant new features are added to software, or when a new product containing new features replaces the further development of a current product line. Protempis reserves the right to determine, in its sole discretion, what constitutes a Fix, Minor Update, or Major Upgrade.

Warranty Remedies

If the Protempis Product fails during the warranty period for reasons covered by this limited warranty and you notify Protempis of such failure during the warranty period, Protempis will repair OR replace the nonconforming Product with new, equivalent to new, or reconditioned parts or Product, OR refund the Product purchase price paid by you, at Protempis's option, upon your return of the Product in accordance with Protempis's product return procedures then in effect

How to Obtain Warranty Service

To obtain warranty service for the Product, please contact your local Protempis authorized dealer. Alternatively, you may contact Protempis to request warranty service by sending an email to support@protempis.com. Please prepare to provide:

- -your name, address, and telephone numbers
- proof of purchase
- a copy of this Protempis warranty
- a description of the nonconforming Product including the model number
- an explanation of the problem

The customer service representative may need additional information from you depending on the nature of the problem. Any expenses incurred in the making of a claim under this warranty will be borne by you.

Warranty Exclusions and Disclaimer

This Product limited warranty shall only apply in the event and to the extent that: (a) the Product is properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Protempis's applicable operator's manual and specifications, and; (b) the Product is not modified or misused.

This Product limited warranty shall not apply to, and Protempis shall not be responsible for, defects or performance problems resulting from: (i) the combination or utilization of the Product with hardware or software products, information, data, systems, interfaces, or devices not made, supplied, or specified by Protempis;

(ii) the operation of the Product under any specification other than, or in addition to, Protempis's standard specifications for its products; (iii) the unauthorized installation, modification, or use of the Product; (iv) damage caused by: accident, lightning or other electrical discharge, fresh or salt water immersion or spray (outside of Product specifications), or exposure to environmental conditions for which the Product is not intended; (v) normal wear and tear on consumable parts (e.g., batteries); or (vi) cosmetic damage. Protempis does not warrant or guarantee the results obtained through the use of the Product, or that software components will operate error free.

NOTICE REGARDING PRODUCTS EQUIPPED WITH TECHNOLOGY CAPABLE OF TRACKING SATELLITE SIGNALS FROM SATELLITE BASED AUGMENTATION SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), OMNISTAR, GPS, MODERNIZED GPS OR GLONASS SATELLITES, OR FROM IALA BEACON SOURCES: PROTEMPIS IS NOT RESPONSIBLE FOR THE OPERATION OR FAILURE OF OPERATION OF ANY SATELLITE BASED POSITIONING SYSTEM OR THE AVAILABILITY OF ANY SATELLITE BASED POSITIONING SIGNALS.

THE FOREGOING LIMITED WARRANTY TERMS STATE PROTEMPIS'S ENTIRE LIABILITY, AND YOUR EXCLUSIVE REMEDIES, RELATING TO THE PROTEMPIS PRODUCT UNDER THIS LIMITED WARRANTY. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE PRODUCT, AND ACCOMPANYING DOCUMENTATION AND MATERIALS ARE PROVIDED "AS-IS" AND WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND, BY EITHER PROTEMPIS OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION,

PRODUCTION, INSTALLATION, OR DISTRIBUTION, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR GUARANTEES OF MERCHANTABILITY, ACCEPTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL OBLIGATIONS OR LIABILITIES ON THE PART OF PROTEMPIS ARISING OUT OF, OR IN CONNECTION WITH, ANY PRODUCT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON DURATION OR THE EXCLUSION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, Protempis'S ENTIRE LIABILITY UNDER ANY PROVISION HEREIN SHALL BE LIMITED TO THE AMOUNT PAID BY YOU FOR THE PRODUCT ANDIN NO EVENT SHALL Protempis OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE WHATSOEVER UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING IN ANYWAY TO THE PRODUCTS, SOFTWARE AND ACCOMPANYING DOCUMENTATION AND MATERIALS, (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA, OR ANY OTHER PECUNIARY LOSS), REGARDLESS OF WHETHER Protempis HAS BEEN ADVISED OF THE POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE COURSE OF DEALING WHICH DEVELOPS OR HAS DEVELOPED BETWEEN YOU AND Protempis, BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE **EXCLUSION OR LIMITATION OF LIABILITY FOR** CONSEQUENTIAL OR INCIDENTAL DAMAGES. THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU

PLEASE NOTE: THE ABOVE Protempis LIMITED
WARRANTY PROVISIONS WILL NOT APPLY TO
PRODUCTS PURCHASED IN THOSE JURISDICTIONS
(E.G., MEMBER STATES OF THE EUROPEAN
ECONOMIC AREA) IN WHICH PRODUCT WARRANTIES
ARE THE RESPONSIBILITY OF THE LOCAL Protempis
AUTHORIZED DEALER FROM WHOM THE PRODUCTS

ARE ACQUIRED. IN SUCH A CASE, PLEASE CONTACT YOUR LOCAL Protempis AUTHORIZED DEALER FOR APPLICABLE WARRANTY INFORMATION.

Official Language

THE OFFICIAL LANGUAGE OF THESE TERMS AND CONDITIONS IS ENGLISH. IN THE EVENT OF A CONFLICT BETWEEN ENGLISH AND OTHER LANGUAGE VERSIONS, THE ENGLISH LANGUAGE SHALL CONTROL.

Notices

Class B Statement - Notice to Users. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes and modifications not expressly approved by the manufacturer or registrant of this equipment can void your authority to operate this equipment under Federal Communications Commission rules.

Canada

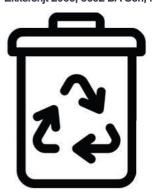
This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications, ICES-003.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de Classe B prescrites dans le règlement sur le brouillage radioélectriqueédicté par le Ministère des Communications du Canada, ICES-003.

Europe

This product has been tested and found to comply with the requirements for a Class B device pursuant to European Council Directive 89/336/EEC on EMC, thereby satisfying the requirements for CE Marking and sale within the European Economic Area (EEA). These requirements are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential or commercial environment.

Notice to Our European Union Customers


At Protempis, we recognize the importance of minimizing the environmental impacts of our products. We endeavor to meet your needs, not only when you purchase and use our products, but also when you are ready to dispose of them. That is why Protempis is actively pursuing, and will continue to pursue, the expanded use of environmentally friendly materials in all its products, and why we have established a convenient and environmentally friendly recycling program.

As Protempis makes additional recycling facilities available for your use, we will post their locations and contact information to our website.

Recycling in Europe:

To recycle Protempis WEEE:

Spectra Precision GmbH C/O RCL EHV Ekkersrijt 2066, 5692 BA Son, Netherlands

For product recycling instructions and more information, go to www.protempis.com/Compliance

Declaration of Conformity

We, Protempis, United States of America declare under sole responsibility that the product: Acutime 720 complies with Part 15B of FCC Rules.

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interfrence that may cause undesired operation

Document History

VersionDateAuthorChangesV1.00 Rev A03March 2025MRAdded new TSIP 0xA1-22V1.00 Rev A01Aug. 2022FAEInitial version for firmware v1.00

Safety Information

Warnings and cautions

An absence of specific alerts does not mean that there are no safety risks involved. Always follow the instructions that accompany a Warning or Caution. The information it provides is intended to minimize the risk of personal injury and/or damage to property. In particular, observe safety instructions that are presented in the following format:

WARNING - This alert warns of a potential hazard which, if not avoided, could result in severe injury or even death.

CAUTION - This alert warns of a potential hazard or unsafe practice which, if not avoided, could result in injury or property damage or irretrievable data loss.

CAUTION - Electrical hazard - risk of damage to equipment. Make sure all electrostatic energy is dissipated before installing or removing components from the device. An electrostatic discharge (ESD) can cause serious damage to the component once it is outside the chassis.

NOTE - An absence of specific alerts does not mean that there are no safety risks involved.

Operation and storage

WARNING - Operating or storing the Acutime 720 antenna outside the specified temperature range can damage it. For more information, see the product specifications on the data sheet.

Routing any cable

CAUTION - Be careful not to damage the cable. Take care to avoid sharp bends or kinks in the cable, hot surfaces (for example, exhaust manifolds or stacks), rotating or reciprocating equipment, sharp or abrasive surfaces, door and window jambs, and corrosive fluids or gases.

Contents

Legal Notices	
Document History	5
Safety Information	6
Warnings and cautions	6
Operation and storage	6
Routing any cable	6
Introduction	11
Key features	11
Timing features	12
Hardware features	13
Dual-band multi-constellation capability	13
Nanosecond-level accuracy	13
Smart GNSS Assurance	14
Advanced security features	14
Protocols and configuration	14
Detailed Data Sheet	15
Data sheet	
Recommended operating conditions	18
Physical specifications	19
Environmental specifications	19
Protection against Electrostatic Discharge (ESD)	19
Surge protection	19
EMI	19
Hardware	20
Acutime 720 Block diagram	21
Acutime 720 Serial port interface	21
Mechanical Outline Drawing	23
Start-up checklist	24
Antenna placement for Timing receivers	24
The Timing GNSS operation	24

Commissioning the antenna	26
Software	29
System Operation	30
GNSS timing	31
Time references	31
GNSS constellation configuration	
PPS availability	
Startup	
Automatic operation	
Operating modes	34
Integrity monitoring	34
Anti-jamming	
Spoofing and Multi-path	
Cable delay compensation	
Smart antenna performance	37
Acquiring the correct time	38
Customizing operations	39
Communication parameters	40
Protocols	40
Serial port default settings	40
Updating the firmware	41
Protempis Standard Interface Protocol(TSIP)	46
TSIP v1.0 (Protempis Standard Interface Protocol v1.0) packet structure	46
Length	47
Mode	47
Checksum	47
High-level packet flow	47
Packet groups	47
Protocol Version (0x90-00)	49
Receiver Version Information (0x90-01)	51
Port Configuration (0x91-00)	53
GNSS Configuration (0x91-01)	56
NVS Configuration (0x91-02)	62
Timing Configuration (0x91-03)	64
Self-Survey Configuration (0x91-04)	68
Receiver Configuration (0x91-05)	
Group Delay Configuration (0x91-06)	74
Event Capture Configuration (0x91-07)	
Position Info Configuration (0x91-08)	
NMEA Output Configuration (0x91-13)	81
Receiver Reset (0x92-00)	
Reset Cause (0x92-01)	84
Production Information (0x93)	

Firmware Upload (0xA0)	88
Switch slots and restart (0xA0-01)	91
Timing Information (0xA1-00)	93
Timing UTC Offsets (0xA1-01)	
Timing Transmitted Clock Corrections (0xA1-02)	98
Event Capture Information (0xA1-06)	100
Position Information (0xA1-11)	102
Measured offsets between constellations and frequencies Information (0xA1-22)	105
Satellite Information (0xA2-00)	107
Raw UTC Parameters (0xA2-20)	114
Almanac Health Report (0xA2-21)	117
Raw Almanac (0xA2-22)	119
Raw Ephermeris (0xA2-23)	126
Raw lonosphere (0xA2-24)	141
System Alarms (0xA3-00)	
Receiver Status (0xA3-11)	146
Error Codes (0xA3-21)	148
AGNSS (0xA4-00)	149
NMEA 0183 Protocol	150
Introduction	150
NMEA 0183 communication interface	150
NMEA 0183 message structure	150
Field definitions	152
NMEA 0183 message options	154
NMEA 0183 message formats	155
Exception behavior	170
GNSS identification table for NMEA v4.1	171
Setting up the Acutime Smart antenna	173
Smart Antenna Placement	
Sky-Visibility	
Multipath-reflections	
Jamming	
Ground plane	
System requirements	172
Hardware	
Computer	
System software	
Installing and using the software	
Protempis VTS software	
Data fields	
Acutime 720 starter kit	
Universal Interface Module (UIM)	
Power converter (AC/DC)	

Setting up the starter kit	176
Starter kit components	177
Integration	178
Acutime Smart antenna	
Interface cables	179
Power requirements	179
Pulse-Per-Second (PPS)	180
Timing pulse connections	
Serial ports	
Event input	

Introduction

The Protempis[®] Acutime 720[™] dual-band GNSS Smart antenna offers an industry-leading, value-engineered solution for carrier-grade timing products. It is designed to meet the resilient timing requirements mandated by the *United States Government: Executive Order 13905, Strengthening National Resilience Through Responsible Use of Positioning, Navigation, and Timing (PNT) Services*.

The Acutime 720™ dual-band GNSS Smart antenna integrates the latest dual-band multi-GNSS technology into a rugged, self-contained antenna unit that provides optimal GNSS timing performance, in all weather conditions, with continuous operation, long- term reliability, ease of operation, and simple installation.

The Acutime 720™ (referred to in this document as a Smart antenna) offers unparalleled accuracy to meet the stringent synchronization needs of the next-generation networks in various industry verticals including 5G X-Haul, Smart Grid, Data Center, SATCOM, Calibration Services and Industrial Automation applications.

Key features

- Including Dual-band (L1 and L5) multi-constellation GNSS timing receiver
- Nanosecond-level timing accuracy (5 ns 1-sigma) when using both L1 and L5 constellations
- Protection against jamming and spoofing with the Protempis Smart GNSS Assurance™ technology
- Advanced security features that includes secure boot, and T-RAIM
- Supports industry standard protocols NMEA and TSIP for configuration and control
- Advanced multipath mitigation capabilities to distinguish and process directly received signal from reflected signals

Timing features

The timing features include the following:

- Automatic self-survey of position for static operation
- Over-determined timing mode
- Ultra-precise one pulse-per-second (1PPS) output can be configured as an even-second output, RS-422 signal compatible.
- Accuracy <5 ns (1 sigma) with respect to GNSS-time or UTC-time when using both L1 and L5 constellations under the open sky view.

NOTE - Requires accurate cable delays, completed survey position with better than PDOP of 2 (or position error < 1 m). Conditional under minimal ionospheric anomalies.

- T-RAIM (Timing Receiver Autonomous Integrity Monitoring)
- Position Integrity Monitoring
- · Cable delay compensation
- Anti-Jamming function/Anti-Spoofing
- Time keeping from a single satellite
- Time (re-)acquisition from a minimum of two satellites

Hardware features

The Acutime 720 contains the following in a sealed, weatherproof housing:

- An active patch L1/L5 Dual-Band multi-GNSS antenna with a proprietary pre-amp design and integrated band-pass filtering
- Dual-band L1/L5 multi-constellation GNSS timing receiver
- A connector that supports both the power and data interface connection.
- Two user-configurable RS-422 I/O communication ports.
- · 1PPS timing signal output
- Operates with a +7 to +36 VDC power supply with protection against reverse polarity.
- IP67 grade weather proof and corrosion resistant housing.
- Extended operating temperature ragne(-40°C to +85°C).
- Up to 1000 m (3280 feet) for cable length with AWG22 cable.

Dual-band multi-constellation capability

With dual-band multi-constellation capability, the Acutime 720 reduces the timing error under clear skies to 5 nanosecond without the need for an external GNSS correction service.

NOTE - Requires accurate cable delays, completed survey position with better than PDOP of 2 (or position error < 1 m). Conditional under minimal ionospheric anomalies.

Additionally, the Acutime 720 offers the benefit of higher power L5 signals (twice as much power as L1) with its greater bandwidth, and advanced signal design lowers the risk of interference and improves multi-path protection. The multi-band capability of the Acutime 720 allows it to compensate for the ionosphere error while reducing the timing error under clear skies to few nanoseconds without further need for correction.

The Acutime 720 includes a dual-band(L1 & L5) multi-GNSS antenna inside. It uses dual SAW filters for exceptional signal selectivity and out-of- band attenuation thus providing the best total cost to performance ratio.

Nanosecond-level accuracy

The Acutime 720 offers precision time synchronization with 5 nanosecond accuracy in normal mode of operation. The Acutime 720 antenna is designed to meet stringent timing requirements of critical infrastructure and help operators maximize the performance of their networks and optimize the return on their infrastructure investments.

NOTE - Requires accurate cable delays, completed survey position with better than PDOP of 2 (or position error < 1 m). Conditional under minimal ionospheric anomalies.

Smart GNSS Assurance

To protect against today's sophisticated attacks and signal meaconing, Protempis dual-band multi-GNSS receiver offers automatic detection and fail-over with highly reliable anti-jamming and anti-spoofing capabilities.

Advanced security features

With the ideals of zero trust security, the Acutime 720 provides secure boot and anti-tampering features by default. Additionally, the Acutime 720 Smart antenna offers T-RAIM to provide the highest level timing integrity.

Protocols and configuration

Protempis Smart antenna supports industry standard NMEA (National Marine Electronics Association) and TSIP (Protempis Standard Interface Protocol) for configuration and control.

Detailed Data Sheet

- Data sheet
- Recommended operating conditions
- Physical specifications
- Environmental specifications
- Protection against Electrostatic Discharge (ESD)
- Surge protection
- EMI

Data sheet

Features	Specifications
Bands	
L1 - 1602 Mhz and 1575.42 MHz	GPS L1C/A, GLONASS L1OF, Galileo E1, QZSS L1 SAIF
L1 - 1561.098 MHz	BeiDou B1
L5-1176.45 MHz	GPS L5, Galileo E5a, BeiDou B2a, QZSS L5, NavIC SPS
Receiver performance	
Navigation update rate	1 Hz
L1 and L5 position accuracy	1 m CEP acquisition
Acquisition time	
Cold start Hot start	30 s 2 s
Sensitivity	
Tracking and navigation	-160 dBm
Reacquisition	-160 dBm
Hot starts	-157 dBm
Cold starts	-148 dBm
A-GNSS/A-GPS	GNSS data aiding service (such as ephemeris, time, coarse position) for a faster Time To First Fix (TTFF)

Features	Specifications	
Smart GNSS and security		
Anti-jamming	Active CW detection and removal. The product has Dual on-board band pass filters.	
Anti-spoofing	Advanced anti-spoofing algorithms. Detects meaconing of signal and provide fallback capabilities.	
Multipath mitigation		
Timing		
Acutime 720 Accuracy (Standard Deviation)	<5 ns (1-sigma, clear sky, absolute mode)	
(Standard Deviation)	NOTE - Requires a constant temperature, accurate cable delays, completed self-survey position with better than PDOP of 2 (or position error < 1 m), multi-frequency signal measurements. Conditional under minimal ionospheric anomalies.	
Integrity reports	T-RAIM active, phase uncertainty. Time pulse rate/duty-cycle, inter-constellation biases	
Survey-in period	Configurable	
Timing output		
1 PPS output physical interface	RS-422	
1 PPS pulse width	10 milliseconds (default); user programmable from 1 millisecond to 500 milliseconds	
1 PPS on-time edge	Rising edge on time(default); user configurable rising or falling resolution : < 5 nanoseconds	
PP2S	Even second PPS; configurable instead of 1PPS in the same interface	
Environmental data, quality and reli	ability	
Ingress protection	IP 67	
RoHS compliant (lead-free)		
Green (halogen-free)		
ETSI-RED compliant		
Manufactured and fully tested in ISO/TS 16949 certified production sites		

Features	Specifications
High vibration and shock resistance	
UL-94-V0 Flammability Rated	
ESD protection	IEC-61000-4-2 compliant
Surge protection	IEC-61000-4-5 compliant
Electrical data	
Supply voltage	12VDC(7VDC ~ 36VDC)
Power consumption	50mA @ 12 V, 0.6W (typical), < 1W maximum
Interfaces	
UART	2
Protocols	TSIP v1.0, NMEA v4.11
Miscellaneous	
Connector	12-pin round, waterproof
Weight	154g (5.4oz)
Mounting	1"-14" straight thread or 3/4" pipe thread

Recommended operating conditions

Minimum and maximum limits apply over the full operating temperature range unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	DC supply voltage (referenced to GND)	+7	+12	+36	V
I _{CC}	DC supply current		50	80	mA
V _{OD}	Output drive voltage (RL = 100Ω)	2	2.3		V
V _{OC}	Common-mode output voltage (Vcc=3.3V)	1	1.65	3	
V _{TH+}	Positive-going input threshold voltage	+200			mV
V _{TH-}	Negative-going input threshold voltage	-200			mV

Physical specifications

Dimensions	95 mm(Diameter) x 72.5 mm(Height)		
Weight	154 g		
Mounting	1"-14 straight thread or ¾" pipe thread		

Environmental specifications

Parameter	Condition
Operating temperature	-40 °C to + 85 °C (-40°F to 185°F)
Storage temperature	-55 °C to + 105 °C (-67°F to 221°F)
Vibration	0.008 g2/Hz : 5Hz to 20Hz
	0.05 g2/Hz: 20Hz to 100Hz
	-3 dB/octave : 100Hz to 900Hz
Mechanical shock	±40 g operational, ±75 g non-operational
Operating humidity	95% RH, non-condensing at 60°C (140°F) EMC
Operating altitude	-400 m to 10000 m Mean Sea Level
Ingress protection	IP 67

Protection against Electrostatic Discharge (ESD)

ESD testing was performed using test standard IEC 1000-4-2. All input and output pins are protected to ± 500 V ESD level (contact discharge).

Appropriate care and protection against ESD, according to JEDEC standard JESD625-A (EIA 625) and IEC 61340-5-1, must be taken when handling the product.

Surge protection

The Acutime 720 includes a surge protection circuit and it complies with IEC-61000-4-5, so the Smart antenna is protected from nearby lightning hits that come along with high energy.

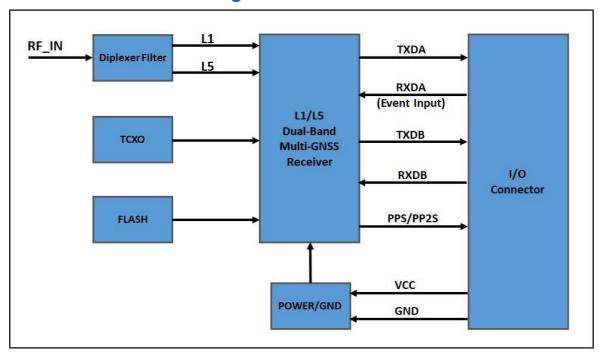
EMI

The unit meets all requirements and objectives of IEC 61000 and FCC Part 15 Subpart J Class B.

Hardware

- Acutime 720 Block diagram
- Acutime 720 Serial port interface
- Mechanical Outline Drawing
- Start-up checklist

The Protempis[®] Acutime 720 contains a highly integrated System-in-Package (SiP), low-power, RFSoC GPS receiver with an application processor, GPS L1 and L5 receiver, a power management unit (PMU), 32 Mbit flash, 32 Mbit Pseudo SRAM (PSRAM), and 64 Mbit SPI Flash.

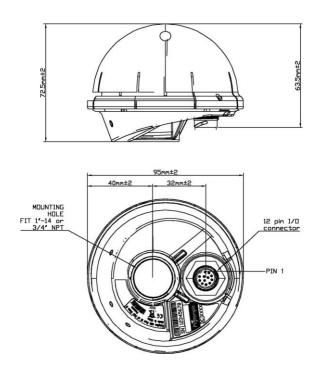

The module contains an ARM® Cortex® M4 processor that utilizes internal frequencies of 26, 192, 384 and 530MHz.

The GPS subsystem contains the RF and baseband circuits, which can track L1 and L5 satellites at the same time, and search GPS satellites using the L1 circuit.

The Acutime 720 is a ruggedized weatherproof dual-band (L1 & L5) multi-constellation receiver for timing that integrates antenna and receiver in Radome shape enclosure ideal for outdoor applications.

It provides a built-in dual-band receiver with 1PPS/PP2S output through the RS-422 interface that can be transmitted up to 1000 m (3280 feet) with a data rate of 115kbits/s. The product eliminates the need for timing receivers to be integrated in embedded system.

Acutime 720 Block diagram


Acutime 720 Serial port interface

Connector Pin#	Wire Color	Pin Name	DB-25 Pin#	Function / Protocol
Pin 1	Red	DC Power	Pin 1	+7 to +36VDC
Pin 2	Violet	Port B: Receive -	Pin 25	Serial Port (Default TSIP, NMEA configurable), RS-422
Pin 3	Orange	Port B: Receive +	Pin 13	Serial Port (Default TSIP, NMEA configurable), RS-422
Pin 4	Brown	Port B: Transmit -	Pin 11	Serial Port (Default TSIP, NMEA configurable), RS-422
Pin 5	Yellow	Port B: Transmit +	Pin 23	Serial Port (Default TSIP, NMEA configurable), RS-422
Pin 6	White	Port A: Receive -	Pin 24	Serial Port (Default for Event Input, TSIP or NMEA configurable), RS- 422
Pin 7	Gray	Port A: Receive +	Pin 12	Serial Port (Default for Event Input, TSIP or NMEA configurable), RS- 422

Pin 8	Green	Port A: Transmit -	Pin 10	Serial Port (Default NMEA, TSIP configurable), RS-422
Pin 9	Black	DC Ground	Pin 7	Ground
Pin 10	Blue	Port A: Transmit +	Pin 22	Serial Port (Default NMEA, TSIP configurable), RS-422
Pin 11	Orange with white stripe	1 PPS: Transmit +	Pin 21	1PPS, RS-422
Pin 12	Black with white stripe	1 PPS: Transmit -	Pin 9	1PPS, RS-422

Mechanical Outline Drawing

Below is the Acutime 720 mechanical drawing. All dimensions are in mm.

Below is the Acutime 720 visual appearance (conceptual image - see chapter Label for the label design and content).

Start-up checklist

Antenna placement for Timing receivers

Select an antenna location

- The Smart antenna is designed for a pole mount
- Select an outdoor location for the antenna, like the roof of your building, or any location that has a relatively unobstructed view of the horizon.
- Install the Smart antenna vertically to the earth.
- Dense wood, concrete, heavy foliage, or metal structures will shield the antenna from satellite signals.
- GNSS signals can be reflected by objects, where metal, walls and shielded glass parts are reflectors. The antenna should not be placed near a wall, window or other large vertical objects.
- The Smart antenna is an active antenna. For optimal performance, locate the antenna as
 far as possible from transmitting antennas, including radars, satellite communication
 equipment, and cellular and pager transmitters.
- When locating the antenna near a radar installation, ensure that the antenna is positioned outside of the radar's cone of transmission. Follow the same guideline when installing the antenna near satellite communication equipment.
- For the best results, mount the antenna below and at least 3 m (10 feet) away from satellite communication equipment.
- The length of cable run from your management system to the Smart antenna location should not degrade the supply voltage below the minimum requirement of the antenna.

The Timing GNSS operation

Start-up

- When the Smart antenna is turned on, it automatically begins to acquire and track GNSS satellite signals.
- It usually obtains its first fix in under one minute.
- During the satellite acquisition process, the Smart antenna outputs periodic TSIP status messages.
- These status messages confirm that the receiver is working.

Automatic operation

- When the Smart antenna has acquired and locked onto a set of satellites that pass the mask criteria and has obtained a valid ephemeris for each satellite, it performs a self-survey.
- After 2,000 position (default) fixes the self-survey is complete.

- By default, the position is saved to memory.
- At that time, the Smart antenna automatically switches to overdetermined (OD) mode.

Satellite masks

- The Smart antenna continuously tracks and uses any enabled L1 or L5 satellite that has been configured by the 0x91-01 command, in an overdetermined clock solution. The satellites must pass the mask criteria to be included in the solution.
- The following table lists the default satellite masks used by the Smart antenna. These
 masks serve as the screening criteria for satellites used in fix computations and ensure that
 solutions meet a minimum level of accuracy.

Mask	Setting	Notes
Elevation	10°	Satellite elevation above the horizon
C/N0	30	Signal strength
PDOP	6	Self-survey only

Elevation mask

By default, Satellites below 10° elevation are not used in the solution. Generally, signals
from low elevation satellites are of poorer quality than signals from higher elevation
satellites. These signals travel farther through the ionospheric and tropospheric layers and
undergo distortion due to these atmospheric conditions.

C/N0 mask

- If the Smart antenna has a clear view of the sky (outdoor antenna placement), a C/N0 mask of 30 dB-Hz is recommended for optimal results.
- For indoor use or operation with an obscured view of the sky, the mask must be low enough
 to allow valid weak signals to be used. For indoor operation, an CN0 mask of 0 dB-Hz (zero)
 is recommended.

Low SNR values can result from low-elevation satellites, partially obscured signals (for example, dense foliage), or multi-reflected signals (multipath).

NOTE - C/No and Elevation masks affect both the positioning and timing solutions.

PDOP mask

Position Dilution of Position (PDOP) is a measure of the error caused by the geometric relationship of the satellites used in the position solution. Satellite sets that are tightly clustered or aligned in the sky have a high PDOP and contribute to lower position accuracy.

• For timing applications, a PDOP mask of six offers a satisfactory trade-off between accuracy and GNSS coverage.

NOTE - PDOP is only applicable during self-survey or whenever the receiver is performing position fixes.

Commissioning the antenna

The steps below enable you to determine if the Smart antenna can produce a reliable PPS by:

- making sure the received signal strength is adequate(> 35 dBm).
- determining that the Smart antenna completes the self-survey.
- confirming the position has been stored.
- determining that the Smart antenna stays in overdetermined (OD) mode.
- testing that the system is stable and available for a 24-hour period.
- 1. Install the Smart antenna in a proper position.
- 2. Apply power to the Smart antenna.
- 3. Monitor the **0xA3-11** packet, byte 6. See Receiver Status (0xA3-11).
 - While the GNSS receiver is in self-survey mode, the value will be 0x03.
 - While the GNSS receiver is in overdetermined mode, the value will be 0x06.
- 4. Monitor the **0xA3-00** packet, bytes 6-9 for 24 hours. See System Alarms (0xA3-00).
- 5. During the first 40 minutes of operation some bits will be set high. This is because the following needs to be achieved:
 - 1. Find and track satellites to get a fix.
 - 2. Collect an almanac.
 - 3. Complete the self-survey.
 - 4. Save the surveyed position.
- 6. After 40 minutes (depending on GNSS coverage) all bits of byte 6-9 should be 0.
 - **NOTE** Possible exception is bit 2 maybe set if a leap second is due for an update.
- 7. Monitor the **0xA3-11** packet bytes 6 and 7 for 24 hours.
 - **NOTE** After the receiver has had time to transition to overdetermined mode, these bytes should always be 6 and 0xFF respectively.

Checklist

Checklist from the start-up	Yes	No	Comment
Antenna in clear view of sky			
0xA3-00 bytes 6-9 (Minor Alarms)			Describe and account for any bits left at 1.
Bit 0: Reserved			Reserved
Bit 1: Reserved			Reserved
Bit 2: Leap second pending			Is set to "1" to provide notice that a leap second is to be applied in the near future. Check with the constellation authority for latest leap second status information, e.g., GPS is at https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html.
Bit 3: Almanac not complete = 0			Almanac complete for all tracked constellations. Wait for at least 15 minutes of continuous tracking of all enabled constellations after the first fix for this bit to clear from "1" to "0".
Bit 4: Survey-in progress = 0			Should be "1" for 40 minutes(default) after first power up, then "0". It may take longer in poor coverage.
Bit 5: GPS almanac status			GPS almanac available if constellation is tracked.
Bit 6: GLONASS almanac status			GLONASS almanac available if constellation is tracked.
Bit 7: Beidou almanac status			BeiDou almanac available if constellation is tracked.
Bit 8: Galileo almanac status			Galileo almanac available if constellation is tracked.
0xA3-00 bytes 14-17 (major alarms)			
Bit 0: Not tracking satellites			Check for adequate view of the sky.
Bit 1: PPS bad			If not zero, then investigate presence of other alarms and RF signal quality.

Checklist from the start-up	Yes	No	Comment
Bit 2: PPS not generated			If not zero, then investigate presence of other alarms and RF signal quality.
Bit 3 - Bit 6 - Reserved			Reserved
Bit 7 - Spoofing / multipath			Check for sources of signal reflection in particular areas with high buildings.
Bit 8: Reserved			Reserved
0xA3-11 byte 6			
Automatic = 3			Should be 3 while doing the self-survey. If not, check the antenna position.
Have GPS time fix (overdetermined mode) = 6			Should be 6 while in overdetermined mode. If not, check the antenna position.
0xA3-11 byte 7			
Doing position fixes = 0			
Have GPS time fix (overdetermined mode) =FF			

NOTE -

- Except for bits 2 and 3 of 0xA3-00, bytes 6-9 all other parameters should be able to maintain a zero value for a period of over 24 hours.
- Bits 0, 1, 2, 7, and 8 of 0xA3-00 bytes 14-17 should also remain zero value.
- If there is a problem and there is a non-zero value, then the antenna position should be changed for a better GPS signal.

Software

- System Operation
- Communication parameters
- Updating the firmware
- ► Protempis Standard Interface Protocol(TSIP)
- NMEA 0183 Protocol
- GNSS identification table for NMEA v4.1

System Operation

This section describes the operating characteristics of the Smart antenna including start-up, satellite acquisition, operating modes, serial data communication, and the timing pulse output.

The Protempis[®] Acutime 720 Smart antenna receives amplified GNSS signals from its internal antenna and gain front-end and passes them to an internal RF down-converter. A highly stable crystal reference oscillator is used by the down-converter to produce the signals used by the digital signal processor (DSP). The DSP acquires and tracks the GNSS signals and extracts the carrier phase and code information as well as the navigation data.

Operation of the tracking channels is controlled by navigation processing software. The software tracking channels track up to 78 satellite signals that meet the tracking masks. The navigation processing software then uses the optimum satellite combination to compute a position. The navigation processing software also manages gathering and decoding of the ephemeris and almanac data for all of the satellites, and timing processing software accepts the tracking information from the navigation software and provides surveying and optimized overdetermined clock solutions.

- GNSS timing
- Time references
- GNSS constellation configuration
- PPS availabilityPPS availability
- Startup
- Automatic operation
- Operating modes
- Integrity monitoring
- Cable delay compensation
- Smart antenna Smart antenna performance
- Acquiring the correct time
- Customizing operations

GNSS timing

For many timing applications, such as time & frequency standards, site synchronization systems, and wireless voice and data networks, the Acutime 720 smart antenna can be used to steer a local reference oscillator. The steering algorithm combines the short-term stability of the oscillator with the long-term stability of the GNSS PPS. An accurate GNSS PPS allows the use of cost-effective crystal oscillators, which have less stability than expensive, high-quality oscillators, such as Oven Controlled Crystal Oscillators (OCXO).

The GNSS system consists of several GPS, GLONASS, BeiDou, Galileo and other regional constellation orbiting satellites. Unlike most telecommunications satellites, most GNSS satellites are not geostationary, so satellites in view are constantly changing. Each GNSS satellite contains redundant highly-stable atomic clocks, which are continuously monitored and corrected by the controlling regional body control segment. For example, the GPS constellation can be considered a set of 24 orbiting "clocks" with worldwide 24-hour coverage.

NOTE - There are geo-stationary satellites for GNSS augmentation and regional coverage.

In addition to serving as highly-accurate stand-alone time sources, GNSS timing modules are used to synchronize distant clocks in communication or data networks. This is possible because all GNSS satellites are corrected to a common master clock. Therefore, the relative clock error is the same, regardless of which satellites are used. For synchronization applications requiring a common clock, GNSS is the ideal solution.

GNSS Error Correction: ITU-T technical paper '**GSTR-GNSS**' suggested different error correction mechanisms for various physical and environmental condition that may impede signal reception and processing. Protempis recommends that the those guideline are followed for the implementation of error correction mechanisms.

Time references

All GNSS satellite systems have their own master clock to which all atomic clocks inside of this system's space vehicles are synchronized. These master clocks provide traceability to the world's UTC (Universal Time Coordinated) clock ensemble, which consists of many individual atomic clocks in many countries. The synchronization among all those clock ensembles causes small steering offsets.

GNSS time differs from UTC (Universal Coordinated Time) by a small, sub-microsecond offset and an integer second offset. The small offset is the steering offset between the GNSS master clock ensemble and the UTC clock ensemble. The large offset is the cumulative number of leap seconds since 1 January 1980, which, on 1 January 2017, was increased from 17 to 18 seconds. Historically, the offset increases, or decreases by one second approximately every 18 to 24 months, just before midnight on 30 June or 31 December. System designers should note whether the output time is UTC or GNSS time. GNSS receivers do not support time zones because they depend on national regulations.

GNSS constellation configuration

The Protempis[®] Acutime 720 Smart antenna can be configured (TSIP packet 0x91-01) to use one of the constellation combinations shown in the following table.

The table below shows the Protempis recommended constellation options you can select.

Combination	L1 GPS	L5 GPS	E1 GAL	E5a GAL	G1 GLO	B1 BD	B2a BD	NavIC	L1 QZSS	L5 QZSS
GPS only	√	√							1	√
Galileo only			1	1						
GLONASS only					√					
BeiDou only						1	√			
NavIC only								1		
GPS/Galileo	1	√	√	1					1	√
GPS/BeiDou	1	√				1	1		1	√
GPS/GLO	1	√			√				1	√
GPS/NavIC	√	√						√	1	√
G3B(Default)	1	√	√	√	1	1	1			

NOTE - QZSS can not be enabled by itself but it can be enabled any combinations with GPS as QZSS uses the same frequency band with GPS.

NOTE - Acutime 720 allows dual-band or L1 only operation. If using L1 all signals must be set to L1. If any dual-band constellation is enabled to include L5 then the unit is configured to dual-band and all enabled dual-band constellations will be dual-band.

PPS availability

Protempis cannot guarantee that the PPS is 100% available or a pulse is generated each and every second. The receiver's ability to generate the PPS depends on various factors, including, but not limited to, the local signal conditions at the place of antenna installation and on the health and validity of the GNSS signals that are broadcasted by the satellites. Protempis has neither control over the GNSS systems nor over the conditions at the place of installation, therefore the PPS may not be available at all times.

Startup

The first time the Acutime 720 Smart antenna is powered-up, it searches for satellites from a cold start (no almanac, time, ephemeris, or stored position). During the satellite acquisition

process, the Smart antenna outputs periodic TSIP status messages. These status messages confirm that the receiver is working.

While the receiver will begin to compute position solutions in less than one minute, the receiver must continuously track satellites for approximately 15 minutes to download complete almanacs. The almanac contains, amongst others, the UTC leap second value. Smart antenna can only compute UTC time after this leap second value was received from the satellites. Therefore, a complete and current almanac is essential for correct UTC output. The initialization process with almanac download should not be interrupted.

The Smart antenna is ready to accept TSIP commands approximately 10 seconds after powerup. If a command is sent to the receiver within this 10 second window, the receiver may ignore the command. The Acutime 720 Smart antenna may not respond to commands sent within the 10 second window and may discard any associated command data.

Automatic operation

When the Acutime 720 antenna has acquired and locked onto a set of satellites that pass the mask criteria listed below, and has obtained a valid ephemeris for each tracked satellite, and there is no stored position, or the position has changed from the last stored position by more than 100 meters, then it performs a self-survey. After a number of valid position fixes, the self-survey is complete. At that time, the Acutime 720 antenna automatically switches to a time-only mode (overdetermined clock mode).

Satellite masks

The following table lists the default satellite masks used by the Acutime 720 antenna. These masks serve as the screening criteria for satellites used in fix computations and ensure that solutions meet a minimum level of accuracy. The satellite masks can be adjusted using the TSIP protocol described in .

Mask	Default Setting	Description
Elevation	10°	Satellite elevation above horizon
C/N0 [dBHz]	30	Signal strength (carrier-to-noise power ratio)
PDOP	6	Position Dilution of Precision (PDOP), used for self-survey only

Elevation mask

Generally, signals from low-elevation satellites are of poorer quality than signals from higher elevation satellites. These signals travel farther through the ionospheric and tropospheric layers and undergo distortion due to these atmospheric conditions. For example, an elevation mask of 10° excludes very low satellites from position fix computations and reduces the likelihood of potential errors induced by using those signals.

PDOP mask

Position Dilution of Precision (PDOP) is a measure of the error caused by the geometric relationship of the satellites used in the position solution. Satellite sets that are tightly clustered or aligned in the sky have a high PDOP and contribute to lower position accuracy.

NOTE - PDOP is applicable only during self-survey or whenever the receiver is performing position fixes.

Operating modes

- Self-survey mode (position fix operating mode)
- Overdetermined clock mode

After establishing a reference position in self-survey mode, the Acutime 720 automatically switches to overdetermined (OD) clock mode.

Self-survey mode

At power-on, the Acutime 720 performs a self-survey by averaging position fixes, default of 2,000 fixes will be averaged.

The number of position fixes until survey completion is configurable.

The default mode during self-survey is 3D Automatic, where the receiver must obtain a three-dimensional (3D) position solution. The very first fix in 3D Automatic mode must include at least five satellites. After a successful first fix, only four satellites are required. If fewer than the required number of satellites are visible, the Acutime 720 suspends the self-survey. 3D mode may not be achieved when the receiver is subjected to frequent obscuration or when the geometry is poor due to an incomplete constellation.

Overdetermined clock mode

Overdetermined clock mode is used only in stationary timing applications. This is the default mode for the Acutime 720 once a surveyed (or user input) position is determined. After the receiver self-surveys its static reference position, it stores the surveyed reference position automatically and switches to overdetermined clock mode and determines the clock solution. The timing solution is qualified by T-RAIM (Time Receiver Autonomous Integrity Monitoring) algorithm, which automatically detects and rejects faulty satellites from the solution.

A minimum of two satellites is required for an initial PPS fix in overdetermined clock mode. Once PPS alignment has been determined only a single satellite is required to maintain that time. If all satellites are lost, then a minimum of two satellites is again required to re-establish PPS alignment.

Integrity monitoring

Using a voting scheme based on pseudo-range residuals, the T-RAIM (Time Receiver Autonomous Integrity Monitoring) algorithm automatically updates the self-survey information by removing the worst satellite with the highest residual errors from the solution set if that satellite's residual is above the current constellation average.

In addition to T-RAIM, the Smart antenna implements position integrity checking on startup, in case the receiver has been moved to a new location. When the receiver is powered up with a surveyed (or user input) position in memory, it will compare position fixes computed from the GNSS satellites to the surveyed position. If it finds that the surveyed position is off by more than 100 meters (approximately) horizontally or vertically in the first 60 consecutive GNSS fixes, it

will delete the surveyed position from memory (including non-volatile storage) and restart the self-survey.

Anti-jamming

GNSS jamming is generally caused by intentional or unintentional generation of a signal that interferes at or very near the transmitted frequency of the GNSS satellite signals. This signal causes some background noise of the received signal and a decrease in the received signal-to-noise ratio (C/N0), causing poor tracking and data decoding. This is mitigated in the receivers by the use of filtering to attempt to greatly reduce the jamming signal so that it does not adversely affect the signal. Jamming can be very difficult to protect against because, if the signal is too strong, the front-end RF section of the receiver will be completely overwhelmed and filtering is ineffective.

The Acutime 720 antenna protects against anti-jamming with hardware filtering and software algorithms.

About hardware filtering

- During the design process of the GNSS receiver great care is taken to avoid the component parts like oscillators and microprocessors producing signals that can jam the RF signal path. This can occur by either transmission over the air or conducted along the copper PCB traces.
- Protempis takes into account component choice using low-noise, high-spec parts.
- Component layout
- PCB trace layout
- Grounding techniques

About the software algorithms

- T-RAIM is used in OD mode using stringent thresholds to improve anti-jamming detection and mitigation.
- T-RAIM discards inconsistent information that would degrade the combined overdetermined solution.
- Tracked multiple satellite integrity checks.
- Doppler measurements are examined for consistency with each other. Satellites with Doppler measurements that are far away from the median Doppler measurement are not used to improve anti-jamming detection and mitigation.
- Pseudorange measurements are examined for consistency with each other. Satellites with pseudorange measurements that are far away from the median pseudorange measurement are removed, or their effect reduced in the fix.
- Filter for SV noise and pseudorange offsets. Protempis measures from the median pseudorange value instead of the last value.

The Acutime 720 antenna has anti-jamming enabled as a default configuration; *it cannot be disabled*.

Below is the minimum number of satellites required to be tracked for each startup condition.

Condition	Anti-jamming enabled?	Minimum number of satellite tracking
Position NOT validated before (self-surveying)	YES	≥5SVs
Position validated before	YES	≥4SVs
First timing fix after all SVs drop	YES	≥2SVs
Timing fix	YES	≥ 1 SVs

If the Acutime 720 antenna drops all the satellites (SV count is 0) after position validated, it needs \geq 2 satellites to re-establish a time relationship for the first timing fix again and If it drops to \geq 1, it will continue working indefinitely before it discards all satellites with enabling anti-Jamming.

Spoofing and Multi-path

Spoofing

Spoofing is generally an intentional generation of a signal that matches that of the transmitted GNSS signal. This will include satellite data and, for all practical purposes, looks like a "real" GNSS satellite. This technique is generally used in an attempt to force the receiver to generate incorrect behavior, thereby causing failure in the receiver application.

A spoofing attack attempts to deceive a GNSS receiver by broadcasting incorrect GNSS signals, structured to resemble a set of normal GNSS signals, or by rebroadcasting genuine signals captured elsewhere or at a different time.

These spoofed signals may be modified in such a way as to cause the receiver to estimate its position to be somewhere other than where it actually is, or to be located where it is but at a different time, as determined by the attacker.

This can cause lots of noise and incorrect computations within the receiver, depending on which signal is acquired at any point in time.

The Protempis T-RAIM system includes cross constellation validation to attempt to mitigate these spoofing attacks.

Multi-path

Multi-path is a form of spoofing caused by the GNSS signal reflecting off of a surface and being received simultaneously with the non-reflected (line of sight) signal, or it may be the only signal available. This can have the same effects as spoofing in that the receiver computes incorrect position or timing solutions.

Alarm conditions of Spoofing and Multi-path

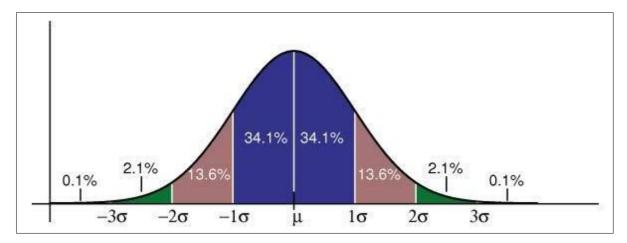
The Acutime 720 antenna detects Spoofing and Multi-path with internal software algorithms and alerts alarms at the Spoofing/Multi-path Bit 7 to major alarms in System Alarms (0xA3-00).

- Compares CNo values across constellations. If all CNo values are within 2dB then the signal is assumed to be spoofed and the spoofed alarm will be set.
- Compares the timing solution of constellations against other constellations. If the difference
 is more than 30 meters (~100ns) then the constellation is marked as spoofed and removed
 from the timing solution.
- Compares surveyed position against current position solution. If position has changed more than 30 meters then the spoofing alarm flag is set.

NOTE - Spoofing is a complex signal degradation technique that cannot effectively be automatically mitigated. That is why the Acutime 720 raises an alarm to signal potential spoofing conditions. it is up to the user equipment to decide if it wants to use the resultant timing solution or not in these alarm conditions.

Cable delay compensation

The default configuration of the Smart antenna provides optimal timing accuracy. The only item under user- or host-control that can affect the receiver's absolute PPS accuracy is the delay introduced by the antenna cable. For long cable runs, this delay can be significant. TSIP packet 0x91-01 / NMEA packet PS sets the cable delay parameter, which can be saved in non-volatile memory. For the best absolute PPS accuracy, adjust the cable delay to match the installed cable length (check with your cable manufacturer for the delay for a specific cable type). Generally, the cable delay is about 5.9 nanoseconds per meter of cable.


NOTE - To offset the propagation delay inherent in the antenna cable typically 5.9 ns per meter from the antenna to the receiver and further improve the accuracy, determine the length of the cable and enter the offset based on the specific cable type.

NOTE - Another source of delay that can affect high accuracy is antenna group delay. This is an effect generated by an antenna or signal splitter that causes different delays at different frequencies. For high-accuracy those delays must be accounted for and entered into the system with the "group delay" command (0x91-06).

Smart antenna performance

The time reference can be configured by the user with the 0x91-03 TSIP command. See Timing Configuration (0x91-03).

The PPS time accuracy is approximately three times worse, around 20 ns (1 sigma), when the receiver is computing position fixes during self-survey or when it's configured for 3D mode. The accuracy of the PPS is specified as a statistical Gaussian distribution. The plot below shows the likelihood function of a Gaussian distribution.

A definition of a parameter with 1 sigma (1σ) means that 68.2% of all samples are within the specified range, but 31.8% of all samples are outside. A definition with statistical notation also implies that there's no specified minimum or maximum. This applies also to Protempis's accuracy specifications of the Smart antenna.

Acquiring the correct time

It is recommended that the time information is derived from the timing messages in the TSIP or NMEA protocols. The time reported in position packets is a time-tag for this particular position fix, but not necessarily the time of the preceding PPS pulse.

Protocol	Timing message
TSIP	Report packet 0xA1-00
NMEA	ZDA message

- Ensure that the almanac is complete and the receiver is generating 3D fixes or reporting an overdetermined clock mode. This will eliminate the UTC offset jump.
- The time of the PPS pulse comes in the TSIP packet 0xA1-00 (see page 93) or NMEA packet ZDA following the PPS pulse.
- The leading edge of the PPS occurs on-time with the GNSS second. This can be either the
 rising edge (when the rising edge on-time is selected in TSIP packet 0x91-03) (see page
 64) or the falling edge.
- If using TSIP, capture the time from TSIP packet 0xA1-00 (see page 93). If using NMEA, capture the time from NMEA packet ZDA (see page 158).
- Ensure that no alarm flags are raised by the receiver, which could indicate an uncertain or invalid time output.
- Once time is acquired, on the next PPS add 1 to the whole second to read the correct time.

NOTE - The smallest time resolution is one second.

Customizing operations

The Acutime 720 Smart antenna provides a number of user configurable parameters to customize the operation of the unit. These parameters can be stored in non-volatile storage (NVS) to be retained during loss of power and through resets with TSIP command 0x91-02 (see page 83). At reset or power-up, the receiver configures itself based on the parameters stored in the flash memory. You can change the value of these parameters to achieve the desired operations using a variety of TSIP packets. The Smart antenna configures itself based on the new parameter immediately, but the new parameter value is not automatically saved to flash. You must use the Save command to retain the parameters changed values in flash.

Send packet 0x91-02 to direct the Smart antenna to save the current parameter values to the flash. To save or delete the stored position, use command packet 0x91-04 (see page 68). You can also direct the receiver to set the parameter values to their factory default settings (and to erase the stored position) with packet 0x92-00.

In brief, to customize the Smart antenna operations for your application:

- Configure the receiver using TSIP command packets until the desired operation is achieved.
- Use TSIP packet 0x91-02 to save the settings in nonvolatile storage (flash). Check for the TSIP packet 0x91-02 response to verify the settings were saved successfully.
- If the position was not automatically saved during the self-survey or if it was manually entered, the position can be saved to flash memory using TSIP packet 0x91-04.

The new settings will control receiver operations whenever it is reset or power cycled.

Communication parameters

The Protempis $^{\mathbb{R}}$ Acutime 720 Smart antenna supports two message protocols: TSIP and NMEA.

Communicating with the receiver is through serial ports. The port characteristics can be modified to accommodate your application requirements. The protocol settings and options are stored in Random Access Memory (RAM). They can be saved into the non-volatile memory (Flash), which does not require back-up power, if required, using command.

Protocols

The following protocols are available:

Protocol	Specification	Direction
TSIP	Protempis proprietary binary protocol	Input / Output
NMEA	NMEA 0183 v4.1	Input ¹ / Output

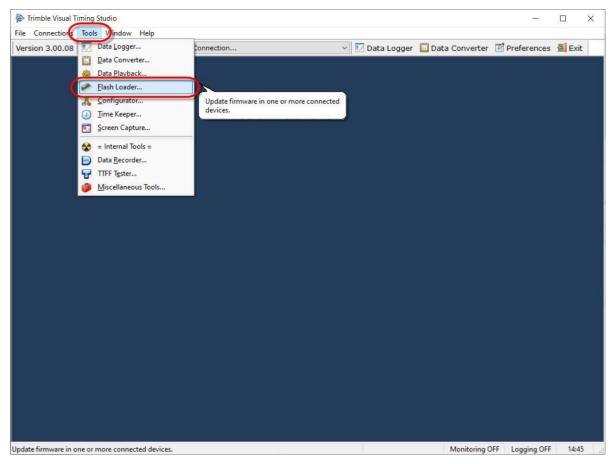
¹Requires use of Protempis-proprietary NMEA messages.

Serial port default settings

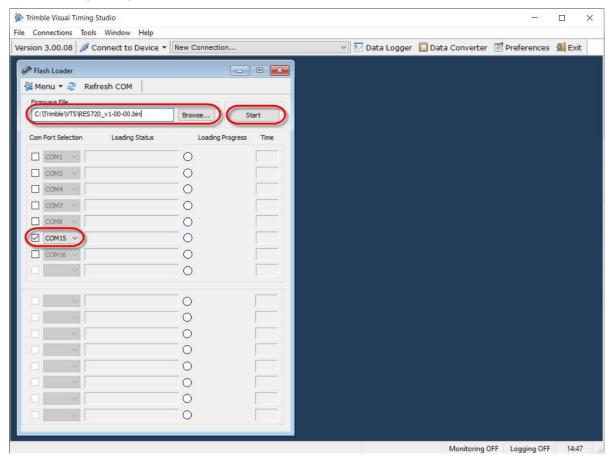
The Acutime 720 Smart antenna supports two serial ports. The default settings are:

Port	Port	Pin Number	Protocol	Characteristic				
	UART	Diff. pair		Baud rate	Data bits	Parity	Stop bits	Flow control
Α	TXDA	8, 10	Not set ¹	115 kbps	8	None	1	None
	RXDA	6, 7	Not set ¹	115 kbps	8	None	1	None
В	TXDB	4, 5	TSIP out	115 kbps	8	None	1	None
	RXDB	2, 3	TSIP in	115 kbps	8	None	1	None

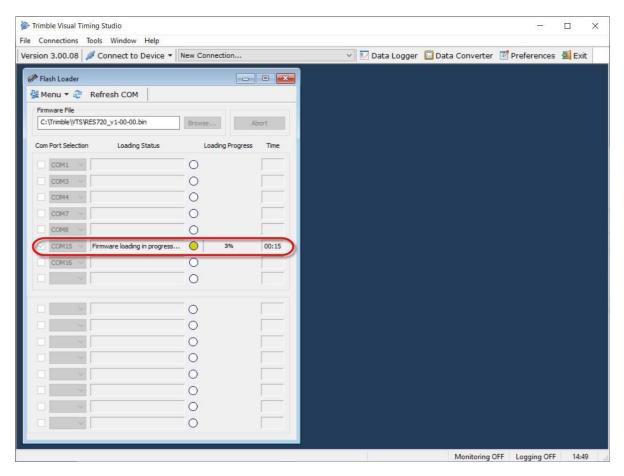
¹Use the TSIP 0x91-00 command (see page 53) on Port A to configure protocol for Port B, and then use the TSIP 0x91-02 command (see page 62) to save the configuration.


- Baud rate, data bits, parity, and stop bits are user configurable.
- Flow control is not available on the serial ports.

Updating the firmware

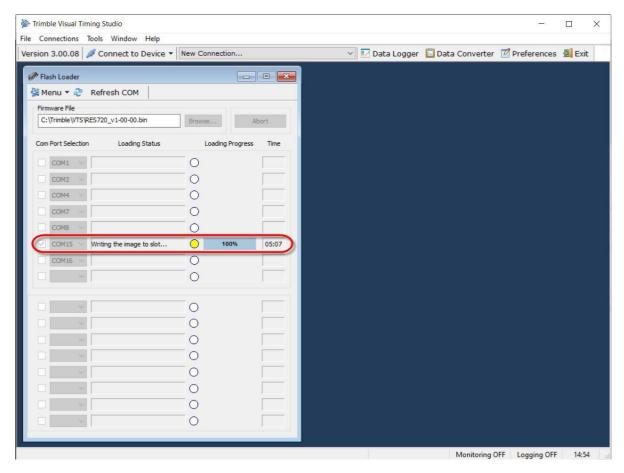

Use the VTS(v3.01.04 or higher) Flashloader tool to load firmware to the Acutime 720 Smart antenna.

As a preparation, connect the receiver to a computer that runs the Microsoft® Windows 10 operating system. Turn on the receiver and make a note of the COM port that connects to port A of the unit.

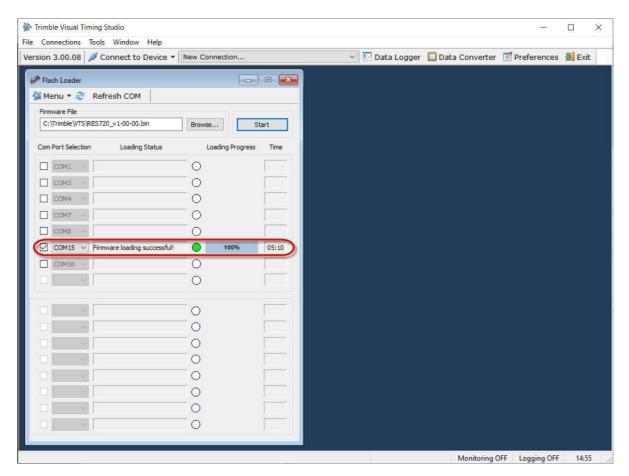

- 1. Start Protempis Visual Timing Studio.
- 2. From the **Tools** menu, select **Flash Loader**:

The following dialog appears:

- 3. Select the check box of the COM port that is connected to port A of the Smart antenna. Selecting a COM port in the Flash Loader software that is currently connected to a Monitor window automatically makes the Monitor window idle.
- 4. Click **Browse** and locate a valid firmware file for the Smart antenna. Double-check that you have selected the correct firmware file.
 - **CAUTION** Loading an invalid file to the receiver may, in a worst case scenario, cause irreversible damage to the device.
- 5. When the COM port and firmware file are selected and the receiver is turned on, click **Start**. The file loading process starts:



You will see the loading status, the loading progress and the time elapsed in the respective fields.


The receiver continues to operate normally during the file upload process. The firmware file is stored in a separate memory area and is not used before the upload process is 100% complete and successful.

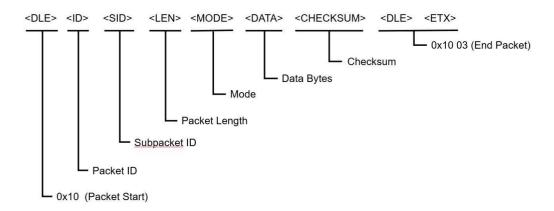
Interrupting the firmware upload process does not cause any harm to the receiver as it still has the previous firmware in the active memory slot. An interrupted firmware upload process cannot be resumed, but you can repeat the file transfer from the start until it finishes with 100% success.

After the firmware has been successfully loaded to the receiver, it will be moved to the actual firmware slot, which is indicated by the *Loading Status*.

When the transfer to the firmware slot is finished, the *Loading Status* will show that the firmware loading was successful and the receiver will restart from the new firmware slot.

The time for the image upload takes several minutes, depending on the COM port speed. The time needed for writing the firmware to the firmware slot is very short, though. The actual service outage due to the firmware loading is basically just the normal TTFF time for the restart plus a few seconds for the firmware writing.

The firmware update process is very secure because the previous firmware is still the second firmware slot of the receiver. If for some reason, the new firmware does not correctly start up, it is still possible to roll back to the previous firmware version.


After the firmware loading, you can close the Flash Loader window and reconnect the Monitor window to Acutime 720 Smart antenna. Ensure that you are seeing the new firmware version in the software version information fields in the Monitor window.

Protempis Standard Interface Protocol(TSIP)

The Protempis[®] Acutime 720 Smart antenna introduces TSIP v1.0. While closely resembling the original TSIP, this version adds data length and checksum information, making it incompatible with legacy TSIP, but both can be interpreted with the same packet parsing routines. All packets have a packet ID as well as a subpacket ID. TSIP v1.0 packets can be identified by their packet ID.

TSIP v1.0 (Protempis Standard Interface Protocol v1.0) packet structure

The basic structure of a TSIP packet is the same for both command and report packets.

A typical v1.0 packet will look like the following format:

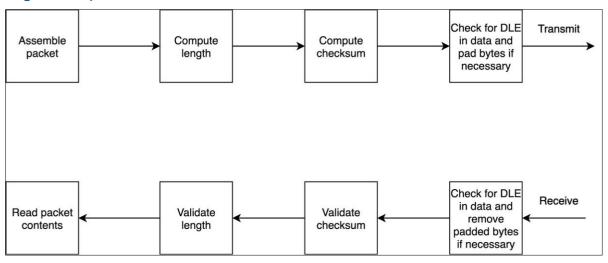
Description	Value
Start of packet, <dle></dle>	0x10
Packet ID	0x90
Subpacket ID	0x00
Length (16-bit)	0x0003
Mode	0x00
Data	0x04
Checksum	0x12
End of packet 1, <dle></dle>	0x10
End of packet 2, <etx></etx>	0x03

- <DLE> is the byte 0x10
- $\langle ETX \rangle$ is the byte 0x03
- Packets with similar information type are grouped together and have the same packet ID.

- Information in the packets is differentiated using subpacket IDs. Some of the groups are version, receiver configuration, PVT.
- All multi-byte values are sent big-endian.
- To prevent confusion with the starting and ending frame sequences, <DLE> <ID> and <DLE> <ETX> respectively, every <DLE> byte in the <data bytes> of a packet is preceded by an extra <DLE> stuffing byte. These extra <DLE> bytes must be added (stuffed) before sending a packet and removed (unstuffed) after receiving the packet.

Length

Length will be all bytes starting from Mode up to and including Checksum. Note that length is computed before padding of delimiter bytes (0x10).


Mode

Mode for each command will be either one of Query (0x00) or Set (0x01) or Response (0x02). All packets do not support all of the modes; check packet description for supported modes.

Checksum

Checksum computation is a simple NMEA-like XOR of all bytes starting from packet ID up to and including the last data byte. Note that the TSIP delimiters are left out from the Checksum computation. Note that Checksum is computed before padding of delimiter bytes (0x10).

High-level packet flow

Packet groups

Value	Name	Description
0x90	Version Information	Contains packets with firmware version, hardware code, production information etc

Value	Name	Description
0x91	Receiver Configuration	Contains packets that can set baud rate etc
0x92	Resets	Contains packets with resets and reset cause
0x93	Production and Manufacturing	Contains board serial number and production data
0xA0	Firmware Upload	Contains packets related to firmware upload
0xA1	PVT	Contains packets with timing alarms, PPS status, and position
0xA2	GNSS information	Contains satellite tracked/used, signal level, azimuth elevation, prn etc
0xA3	Alarms and Status	Contains packets with major, minor and different receiver status information
0xA4	AGNSS	Contains packets that allow assisted GNSS loading of receiver
0xA5	Miscellaneous	

Protocol Version (0x90-00)

Use TSIP 0x90-00 packet to obtain the protocol version being applied in the current FW version.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x90	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	Checksum of packet
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 90 00 00 02 00 92 10 03

Item	Туре	Value	Description
Start Byte	UINT8	0x10	Start of packet
Packet ID	UINT8	0x90	Packet ID
Subpacket ID	UINT8	0x00	Subpacket ID
Length	UINT16	Any	Total length of mode + data + checksum
Mode	UINT8	2	2: Response
NMEA Major Version	UINT8	Any	NMEA Major Version
NMEA Minor Version	Ι ΙΙΝΙΤΩ	Any	NMEA Minor Version
TSIP Version	UINT8	Any	Protempis TSIP Version
	Start Byte Packet ID Subpacket ID Length Mode NMEA Major Version NMEA Minor Version	Start Byte UINT8 Packet ID UINT8 Subpacket ID UINT8 Length UINT16 Mode UINT8 NMEA Major Version UINT8 NMEA Minor Version	Start Byte UINT8 0x10 Packet ID UINT8 0x90 Subpacket ID UINT8 0x00 Length UINT16 Any Mode UINT8 2 NMEA Major Version UINT8 Any NMEA Minor Version Any Any Any

Byte	Item	Туре	Value	Description
9	Protempis NMEA Version	UINT8	Any	Protempis NMEA Version
10	Reserved	UINT8	Any	
11	Reserved	UINT8	Any	
12	Reserved	UINT8	Any	
13	Reserved	UINT8	Any	
14	Reserved	UINT8	Any	
15	Checksum	UINT8	Any	Checksum of packet
16	Delimiter 1	UINT8	0x10	End of packet 1
17	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 90 00 00 0B 02 04 01 01 01 FF FF FF FF 63 10 03

Receiver Version Information (0x90-01)

Use TSIP 0x90-01 packet to obtain the firmware version, HW version, Product name and etc. The product name is Acutime 720.

•

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x90	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 90 01 00 02 00 93 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x90	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Major Version	UINT8	Any	Firmware Major Version
7	Minor Version	UINT8	Any	Firmware Minor Version
8	Build Number	UINT8	Any	Firmware Build Number
9	Month	UINT8	1-12	Firmware Build Month
10	Day	UINT8	1-31	Firmware Build Day

Byte	Item	Туре	Value	Description
11-12	Year	INT16	Any	Firmware Build Year
13-14	Hardware ID	UINT16		Hardware code
15	Length of Product Name	UINT8	Any	The length of product name (L1)
16	Product Name	L1 bytes	String	Product name in ASCII
16 + L1	Product Capabilities	UNIT32	Any	Bit-map of the product capabilities (default 0):
				Bit 0 : Single-frequency Bit 1 : NavIC enabled Bit2-31 : reserved (0)
20 + L1	Checksum	UINT8	Any	
21 + L1	Delimiter 1	UINT8	0x10	End of packet 1
22 + L1	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 90 01 00 14 02 00 01 00 0A 19 07 E3 0B F9 08 50 61 72 61 73 52 65 66 8B 10 03

Port Configuration (0x91-00)

Use TSIP packet 0x91-00 to set the port characteristics. You can enable or disable each port and both port can be enabled simultaneously.

TSIP or NMEA is configurable and user can change the serial port setup for each interface.

NOTE - After changing the serial port setup, save the configuration so that module can start up with the saved configuration after power cycles.

NOTE - If you lose your serial port setup, you can not connect the module. In this case, please use "auto detect" feature in the VTS tool.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Port	UINT8	0-1, 0xFF	0: PORT A 1: PORT B 255: Current port
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
19	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 00 00 03 00 00 92 10 03

10 91 00 00 03 00 FF 6D 10 03

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID

Byte	Item	Туре	Value	Description
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Port	UINT8	0-1, 255	0: Port A 1: Port B 255: Current port
7	Port Type	UINT8	0	0: UART
				Currently only UART is supported
8	Protocol	UINT8	2, 4, 255	2: TSIP 4: NMEA 255: Ignore
9	Baud Rate	UINT8	0-255	7: 9600 8: 19200 9: 38400 10: 57600 11: 115200 12: 230400 13: 460800 14: 921600 255: Ignore
10	Data Bits	UINT8	3, 255	3: 8 bits 255: Ignore
11	Parity	UINT8	0-2, 255	0: None 1: Odd 2: Even 255: Ignore
12	Stop Bits	UINT8	0-1, 255	0: 1 bit 1: 2 bits 255: Ignore
13-16	Reserved	UINT32	Any	
17-20	Reserved	UINT32	Any	
21	Checksum	UINT8	Any	
22	Delimiter 1	UINT8	0x10	End of packet 1
23	Delimiter 2	UINT8	0x03	End of packet 2

Set example to set TSIP protocol at baud rate of 115200 8N1

10 91 00 00 11 01 00 00 02 0B 03 00 00 FF FF FF FF FF FF FF 8B 10 03

Response

Response will be sent with the current settings and then the new settings will be applied.

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total Length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Port	UINT8	0-1	0: Port A 1: Port B
7	Dort Type	UINT8	0	0: UART
	Port Type	UINTO		Currently only UART is supported
8	Protocol	UINT8	2, 4	2: TSIP 4: NMEA
9	Baud Rate	UINT8	7-14	7: 9600 8: 19200 9: 38400 10: 57600 11: 115200 12: 230400 13: 460800 14: 921600
10	Data Bits	UINT8	3	3: 8 bits
11	Parity	UINT8	0-2	0: None 1: Odd 2: Even
12	Stop Bits	UINT8	0-1	0: 1 bit 1: 2 bits
13-16	Reserved	UINT32	Any	
17-20	Reserved	UINT32	Any	
21	Checksum	UINT8	Any	
22	Delimiter 1	UINT8	0x10	End of packet 1
23	Delimiter 2	UINT8	0x03	End of packet 2

GNSS Configuration (0x91-01)

Use TSIP packet 0x91-01 to set the GNSS configuration. Each constellation can be set with each bit mask.

NOTE - To get the verified combinations of GNSS constellation, please refer to the "GNSS Constellation Configuration" chapter.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 01 00 02 00 92 10 03

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set

Byte	Item	Туре	Value	Description
6-9	Constellation	UINT32	Any	Bit 0 - GPS L1C Bit 1 - GPS L2 (not supported, for future use) Bit 2 - GPS L5 Bit 3 - Reserved Bit 4 - GLONASS G1 Bit 5 - GLONASS G2 (not supported, for future use) Bit 6,7 - Reserved Bit 8 - SBAS Bit 9 - Reserved Bit 10 - Reserved Bit 11 - Reserved Bit 12 - Beidou B1 Bit 13 - Beidou B2i (not supported, for future use) Bit 14 - Beidou B2a Bit 15 - Reserved Bit 17 - Galileo E1 Bit 17 - Galileo E5a Bit 18 - Galileo E5b (not supported, for future use) Bit 19 - Galileo E5b (not supported, for future use) Bit 20 - Reserved Bit 21 - QZSS L1C Bit 22 - QZSS L2C (not supported, for future use) Bit 23 - QZSS L5 Bit 24 - Reserved Bit 25 - Reserved Bit 26 - NavIC L5 Bit 27 - Reserved Bit 28 - Reserved Bit 28 - Reserved Bits 29-31 - Reserved Set bits indicate enabled
				constellation and frequency 0xFFFFFFFF indicates that this field needs to be ignored

Byte	Item	Туре	Value	Description
10-13	Elevation Mask	SINGLE	0-90	In degrees
				Lowest satellite elevation for fixes only when the receiver is operating in the overdetermined clock mode
				0xFF indicates this fields needs to be ignored.
14-17	Signal/CN0 Mask	SINGLE	0-37	In dB-Hz
				Minimum signal level for fixes., used when the receiver is operating in the overdetermined clock mode
				0xFF indicates this fields needs to be ignored
18-21	PDOP Mask	SINGLE	0 - 10	Maximum PDOP for fixes
				-1: Ignore field
22	Anti- jamming	UINT8	1	1: Enabled (ignored)
				For potential future use, In this product Anti-jamming is always enabled as the algorithms are augmented so that the meaning is no longer valid.
				0xFF indicates this fields needs to be ignored
23	Fix Rate	UINT8	0	0: 1 Hz (ignored)
				For future use, currently we only support 1 Hz
				0xFF indicates this fields needs to be ignored
24-27	Antenna cable delay	SINGLE	0-1e-6	In seconds
28-31	Reserved	UINT32	Any	
32	Checksum	UINT8	Any	
33	Delimiter 1	UINT8	0x10	End of packet 1
34	Delimiter 2	UINT8	0x03	End of packet 2

Set example:

 $10\,91\,01\,00\,1C\,01\,00\,03\,50\,15\,40\,A0\,00\,00\,41\,F0\,00\,00\,40\,C0\,00\,00\,01\,00\,00\,00\,00\,00\,FF\,FF\,FF\,1B\,10\,03$

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6-9	Constellation	UINT32	Any	Bit 0 - GPS L1C Bit 1 - GPS L2 (not supported, for future use) Bit 2 - GPS L5 Bit 3 - Reserved Bit 4 - GLONASS G1 Bit 5 - GLONASS G2 (not supported, for future use) Bit 6,7 - Reserved Bit 8 - SBAS Bit 9 - Reserved Bit 10 - Reserved Bit 11 - Reserved Bit 12 - Beidou B1 Bit 13 - Beidou B2i (not supported, for future use) Bit 14 - Beidou B2a Bit 15 - Reserved Bit 16 - Galileo E1 Bit 17 - Galileo E5a Bit 18 - Galileo E5b (not supported, for future use) Bit 19 - Galileo E6 (not supported, for future use) Bit 20 - Reserved Bit 21 - QZSS L1C Bit 22 - QZSS L2C (not supported, for future use) Bit 23 - QZSS L5 Bit 24 - Reserved Bit 25 - Reserved Bit 27 - Reserved Bit 27 - Reserved Bit 28 - Reserved Bits 29-31 - Reserved Set bits indicate enabled constellation and frequency
10-13	Elevation Mask	SINGLE	0-90	In degrees Lowest satellite elevation for fixes only when the receiver is operating in the overdetermined clock mode

Byte	Item	Туре	Value	Description
14-17	Signal Mask	SINGLE	0-37	In dB-Hz
				Minimum signal level for fixes. Used when the receiver is operating in the overdetermined clock mode
18-21	PDOP Mask	SINGLE	0-10	Maximum PDOP for fixes
22	Anti- jamming	UINT8	1	1: Enabled
23	Fix Rate	UINT8	0	0: 1 Hz
24-27	Antenna cable delay	SINGLE	0-1e-6	In seconds
28-31	Reserved	UINT32	Any	
32	Checksum	UINT8	Any	
33	Delimiter 1	UINT8	0x10	End of packet 1
34	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 91 01 00 1C 02 00 00 00 05 41 C8 00 00 42 14 00 00 40 40 00 00 01 00 34 04 7F EF FF FF FF FF F5 10 03

NVS Configuration (0x91-02)

Use TSIP packet 0x91-02 to set the NVS(Non-volatile storage) configuration. User can save the current configuration in the internal flash memory.

NOTE - To start up the user configuration from power cycles, please use TSIP packet to save the user configuration.

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x02	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Save User Config to NVS	UINT8	0-1	1: Save user config to NVS
7-10	Reserved	UINT32	Any	
11	Checksum	UINT8	Any	
12	Delimiter 1	UINT8	0x10	End of packet 1
13	Delimiter 2	UINT8	0x03	End of packet 2

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x02	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Save User Config Status	UINT8	0-1	0: Save failed 1: User config save successful

Byte	Item	Туре	Value	Description
7-10	Reserved	UINT32	Any	
11	Checksum	UINT8	Any	
12	Delimiter 1	UINT8	0x10	End of packet 1
13	Delimiter 2	UINT8	0x03	End of packet 2

Timing Configuration (0x91-03)

Use TSIP packet 0x91-03 to set the timing configuration of the receiver.

Time base and PPS base can be configurable from each constellation with PPS availability mask.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x03	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 03 00 02 00 90 10 03

Set

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x03	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set

Byte	Item	Туре	Value	Description
6	Time base	UINT8	Any	Bit 2:0
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
7	PPS base	UINT8	Any	Bit 2:0
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
8	PPS Mask	UINT8	Any	Bit 2:0
				0: PPS off 1: PPS always on 2: PPS fix based 3: PPS when valid
				Bit 3
				0: Positive PPS polarity 1: Negative PPS polarity
				Bit 4:
				0: 1PPS
				1: Even PP2S
				Bit 5: Reserved
9-12	reserved	UNIT32	Any	
13-14	Width	UINT16	Any	In milliseconds, 1< width <= 500, value must be value
15-22	Offset	DOUBLE	Any	In seconds, -0.25 <= offset <= +0.25 (set to 0 if offset >= pulse width of resultant frequency)
23	Checksum	UINT8	Any	
24	Delimiter 1	UINT8	0x10	End of packet 1
25	Delimiter 2	UINT8	0x03	End of packet 2

Set example:

10 91 03 00 13 01 00 00 01 FF FF FF F0 0 C8 00 00 00 00 00 00 00 00 49 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x03	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Time base	UINT8	Any	Bit 2:0
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
7	PPS base	UINT8	Any	Bit 2:0
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)

Byte	Item	Туре	Value	Description
8	PPS Mask	UINT8	Any	Bit 2:0
				0: PPS off 1: PPS always on 2: PPS fix based 3: PPS when valid
				Bit 3
				0: Positive PPS polarity 1: Negative PPS polarity
				Bit 4:
				0: 1PPS 1: Even PP2S
				Bit 5: Reserved
9-12	Reserved	UINT32	Any	
13-14	PPS Width	UINT16	Any	In milliseconds
15-22	PPS offset	DOUBLE	Any	In seconds
23	Checksum	UINT8	Any	
24	Delimiter 1	UINT8	0x10	End of packet 1
25	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 91 03 00 13 02 00 00 01 FF FF FF F0 0 C8 00 00 00 00 00 00 00 00 4A 10 03

Self-Survey Configuration (0x91-04)

Use TSIP packet 0x91-04 to set the self-survey configuration.

Self-survey Length field to specify the number of position fixes that are to be averaged together to form the self-surveyed position used for clock-only fixes.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x04	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 04 00 02 00 97 10 03

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x04	Subpacket ID
3-4	Length	UINT16	11	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set

Byte	ltem	Туре	Value	Description
6	Self-Survey	UINT8	Any	Bit 0:
	Mask			0: Ignore 1: Restart self-survey
				Bit 1:
				0: Disable self-survey 1: Enable self-survey
				Bit 3:
				Don't save position Save self-surveyed position at the end of the survey
7-10	Self-survey Length	UINT32	values between 1 and 172800 inclusive	Number of fixes to average and enter overdetermined mode
				(default : 2000 fixes)
11-12	Horizontal Uncertainty	UINT16	>=3 <=1000	Horizontal position uncertainty, meters
				(default 40 meter)
13-14	Vertical Uncertainty	UINT16	>=3 <=1000	Vertical position uncertainty, meters
				(default 40 meter)
15	Checksum	UINT8	Any	
16	Delimiter 1	UINT8	0x10	End of packet 1
17	Delimiter 2	UINT8	0x03	End of packet 2

Set example:

10 91 04 00 0B 01 0A 00 00 00 C8 00 28 00 28 5D 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x04	Subpacket ID
3-4	Length	UINT16	11	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	Self-Survey	UINT8	Any	Bit 0:
	Mask			0: Ignore 1: Restarted self-survey, only returned in response to set command, 0 otherwise
				Bit 1:
				0: Self-survey disabled 1: Self-survey enabled
				Bit 3:
				Don't save position Save self-surveyed position at the end of the survey
7-10	Self-survey Length	UINT32	Any	Number of fixes to average and enter overdetermined mode
11-12	Horizontal Uncertainty	UINT16	>=3 <=1000	Horizontal position uncertainty, meters
13-14	Vertical Uncertainty	UINT16	>=3 <=1000	Vertical position uncertainty, meters
15	Checksum	UINT8	Any	
16	Delimiter 1	UINT8	0x10	End of packet 1
17	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 91 04 00 0B 02 0A 00 00 00 C8 00 28 00 28 5E 10 03

Receiver Configuration (0x91-05)

Use TSIP packet 0x91-05 to set the receiver configuration and bit mask the automatic output messages.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x05	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Port	UINT8	0-1, 0xFF	0: PORT A 1: PORT B 255: Current port
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x05	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Port	UINT8	0-1, 0xFF	0: PORT A 1: PORT B 255: Current port

Byte	Item	Туре	Value	Description
7-10	Type of output	UINT32	Any	Settings: 00: Query mode 01: Event mode 10: Periodic mode 11: Ignored
				Bit positions: 0-1: 0xA1-00 Timing information 2- 3: Reserved 4-5: 0xA1-11 Position information 6-7: 0xA3-00 System alarms 8-9: 0xA3-11 Receiver status 10-11: 0xA2-00 Satellite information 12- 13: 0xA1-06 Event Capture
				*Only event capture information is a true event mode. For the others, event mode and periodic mode are the same.
11-14	Type of output	UINT32	Any	Reserved
15-18	Type of output	UINT32	Any	Reserved
19-22	Type of output	UINT8	Any	Reserved
23	Checksum	UINT8	Any	
23	Delimiter 1	UINT8	0x10	End of packet 1
24	Delimiter 2	UINT8	0x03	End of packet 2

NOTE - By default, only timing information (0xA1-00) is in periodic mode on port A.

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x05	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	Port	UINT8	0-1, 0xFF	0: PORT A 1: PORT B 255: Current port
7-10	Type of output	UINT32	Any	Settings: 00: Query mode 01: Event mode 10: Periodic mode 11: Ignored
				Bit positions: 0-1: 0xA1-00 Timing information 2- 3: Reserved 4-5: 0xA1-11 Position information 6-7: 0xA3-00 System alarms 8-9: 0xA3-11 Receiver status 10-11: 0xA2-00 Satellite information
11-14	Type of output	UINT32	Any	Reserved
15-18	Type of output	UINT32	Any	Reserved
19-22	Type of output	UINT32	Any	Reserved
23	Checksum	UINT8	Any	
23	Delimiter 1	UINT8	0x10	End of packet 1
24	Delimiter 2	UINT8	0x03	End of packet 2

Group Delay Configuration (0x91-06)

Use TSIP 0x91-06 to set the group delay configuration of each GNSS frequency band.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x06	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x06	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6-7	L1 delay	INT16	Any	1575.42 MHz group-delay, 1/10 ns. This is for GPS, Galileo, and QZSS L1 signals.
8-9	G1 delay	INT16	Any	1602.00 MHz group-delay, 1/10 ns. This is for GLONASS L1 signals.
10-11	B1 delay	INT16	Any	1561.098 MHz group-delay, 1/10 ns. This is for BeiDou B1 signals.
12-13	L5 delay	INT16	Any	1176.45 MHz group-delay, 1/10 ns. This is for GPS L5, Galileo E5a, BeiDou B2a, and QZSS L5 signals.
14	Checksum	UINT8	Any	

Byte	Item	Туре	Value	Description
15	Delimiter 1	UINT8	0x10	End of packet 1
16	Delimiter 2	UINT8	0x13	End of packet 2

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x06	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6-7	L1 delay	UNIT16	> 0	1575.42 MHz group-delay, 1/10 ns. This is for GPS, Galileo, and QZSS L1 signals. This is a delay , so must be > 0. 0xFFFF means "unchanged".
8-9	G1 delay	UINT16	> 0	1602.00 MHz group-delay, 1/10 ns. This is for GLONASS L1 signals. This is a delay , so must be > 0. 0xFFFF means "unchanged".
10-11	B1 delay	UINT16	> 0	1561.098 MHz group-delay, 1/10 ns. This is for BeiDou B1 signals. This is a delay , so must be > 0. 0xFFFF means "unchanged".
12-13	L5 delay	UINT16	> 0	1176.45 MHz group-delay, 1/10 ns. This is for GPS L5, Galileo E5a, BeiDou B2a, and QZSS L5 signals. This is a delay , so must be > 0. 0xFFFF means "unchanged".
14	Checksum	UINT8	Any	
15	Delimiter 1	UINT8	0x10	End of packet 1
16	Delimiter 2	UINT8	0x13	End of packet 2

Event Capture Configuration (0x91-07)

Use TSIP 0x91-07 packet to set the event capture configuration.

This configuration allows outputting timing packet when an event input is captured.

Query

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x07	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 07 00 02 00 94 10 03

Set

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x07	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Event capture mode	UNIT16	0-1	0: Disable 1: Enable 0xFF indicates this fields needs to be ignored
7-10	Offset	UNIT32	Any	Offset to be compensated in nanoseconds 0xFF indicates this field needs to be ignored

Byte	Item	Туре	Value	Description
11	Clear event count	UNIT8	1	1: Clear event count 0xFF indicates this field needs to be ignored.
12-15	Reserved	UNIT32	Any	
16	Checksum	UINT8	Any	
17	Delimiter 1	UINT8	0x10	End of packet 1
18	Delimiter 2	UINT8	0x13	End of packet 2

Set example:

10 91 07 00 0C 01 01 00 00 00 0FF FF FF FF FF 65 10 03

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x07	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Event capture mode	UNIT16	0-1	0: Disabled 1: Enabled
7-10	Offset	UINT32	Any	Offset to be compensated in nanoseconds
11-14	Reserved	UNIT32	Any	
15	Checksum	UINT8	Any	
16	Delimiter 2	UINT8	0x10	End of packet 1
17	Delimiter 2	UNIT8	0x03	End of packet 2

Response example:

10 91 07 00 0B 02 01 00 00 00 00 FF FF FF FF 9E 10 03

Position Info Configuration (0x91-08)

Use TSIP 0x91-08 packet to set the position information configuration.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	80x0	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 91 08 00 02 00 9B 10 03

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	80x0	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set

Byte	Item	Туре	Value	Description
6	Position mask	UNIT8	0-15	Bit 0
				0: Real-time position 1: Surveyed position
				Bit 1 0: LLA 1: XYZ ECEF
				Bit 2 0: HAE 1: MSL
				Bit 3 0: Velocity ENU 1: Velocity ECEF
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x13	End of packet 2

Set example:

10 91 08 00 03 01 00 9B 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	80x0	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	Position mask	UNIT16	0-1	Bit 0
				0: Real-time position 1: Surveyed position
				Bit 1 0: LLA 1: XYZ ECEF
				Bit 2 0: HAE 1: MSL
				Bit 3 0: Velocity ENU 1: Velocity ECEF
7	Checksum	UINT8	Any	
8	Delimiter 2	UINT8	0x10	End of packet 1
9	Delimiter 2	UNIT8	0x03	End of packet 2

Response example:

10 91 08 00 03 02 00 98 10 03

NMEA Output Configuration (0x91-13)

Use TSIP 0x91-13 packet to set the NMEA output configuration.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x13	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Port	UINT8	Any	0: Port A 1: Port B 255: Current Port
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x13	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Port	UINT8	Any	0: Port A 1: Port B 255: Current Port
7	Interval	UINT8	1-255	Output interval (seconds)
				Default is 1 second

Byte	Item	Туре	Value	Description
8-11	Output mask	UNIT32	Any	Bit 0: GGA Bit 1: GLL Bit 2: VTG Bit 3: GSV Bit 4: GSA Bit 5: ZDA Bits 6-7: Reserved Bit 8: RMC
				Default is 0x3D
12	Checksum	UINT8	Any	
13	Delimiter 1	UINT8	0x10	End of packet 1
14	Delimiter 2	UINT8	0x13	End of packet 2

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x91	Packet ID
2	Subpacket ID	UINT8	0x13	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Port	UINT8	0-1	0: Port A 1: Port B
7	Interval	UINT8	1-255	Output interval (seconds)
8-11	Output mask	UNIT32	Any	Bit 0: GGA Bit 1: GLL Bit 2: VTG Bit 3: GSV Bit 4: GSA Bit 5: ZDA Bit 8: RMC Default is 0x3D
12	Checksum	UINT8	Any	
13	Delimiter 1	UINT8	0x10	End of packet 1
14	Delimiter 2	UINT8	0x13	End of packet 2

Receiver Reset (0x92-00)

Use TSIP 0x92-00 to set the receiver reset configuration.

A cold reset will clear the GNSS data (almanac, ephemeris, etc.) stored in RAM but retain the surveyed position and saved user configuration.

A hot reset will initiate the module but not erase any stored information.

A factory reset will additionally restore the factory defaults of all configuration parameters stored in flash memory.

A warm reset will clear ephemeris and oscillator uncertainty but retains the last position, time and almanac.

A system reset will clear the GNSS data (almanac, ephemeris, etc.) stored in RAM but retain the surveyed position and saved user configuration.

NOTE - Before applying reset, please be sure that the current configuration has stored in the NVS so that the current configuration can bring up during start-up.

NOTE - If the Factory reset were applied, all current configuration will be back to the factory default, so the serial port setup also will be back to default set.

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x92	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Reset Type	UINT8	0-5	1: Cold reset 2: Hot reset 3: Warm reset 4: Factory Reset 5: System Reset
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Reset Cause (0x92-01)

Use TSIP 0x92-01 to obtain the reset cause.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x92	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x92	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Reset Cause	UINT8	0-8	0: No reset 1: Cold reset 2: Hot reset 3: Warm reset 4: Factory reset 5: System reset 6: Power cycle 7: Watchdog 8: Hardfault/other
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

NOTE - This packet is sent by the unit on every start-up and can also be queried.

Production Information (0x93)

Use TSIP packet 0x93 to obtain the production information of the receiver.

This packet includes serial number information, build date information, production information and etc.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x93	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0x93	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	2: Response
6	Reserved	UINT8	0xFF	
7-10	Serial No.	UINT8	Any	Board serial number
11-26	Ext Serial No.	UINT8[16]	Any	Board extended serial number
27	Build Day	UINT8	1-31	Day of board build day.
28	Build Month	UINT8	1-12	Month of board build date
29-30	Build Year	UINT16	2020- 65535	Year of board build date

Byte	Item	Туре	Value	Description
31	Build Hour	UINT8	0-23	Hour of board build day
32-33	Machine ID	UINT16		Machine ID
34-49	Hardware ID	UINT8[16]	Any	Hardware ID string
50-65	Product ID	UINT8[16]	Any	Product ID string
66-69	Premium Options	UINT32	Any	Premium product options
70-73	Reserved	UINT32	0xFF	Reserved
74-77	Osc search range	FLT	0.001- 8.000	Default oscillator search range in PPM
78-81	Osc offset	FLT	0.001- 8.000	Default oscillator offset in PPM
82	Checksum	UINT8	Any	
83	Delimiter 1	UINT8	0x10	End of packet 1
84	Delimiter 2	UINT8	0x03	End of packet 2

Firmware Upload (0xA0)

Use TSIP packet 0xA0 to upload firmware.

Assumptions:

- Only one of the two application ports can be used to upgrade firmware at a time. Simultaneous upload is not permitted.
- If frame size is 256 bytes and image size is 257 bytes, data will not be padded. Frame 1 will have 256 bytes and frame 2 will have one byte.
- Image size should be less than than 3 MB.

Firmware Upload Request

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA0	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	1	1: Set
6	Command	UINT8	Any	0x00: Firmware Upload Request
7-8	Frame Size	UINT16	256/1024	Individual frame size in bytes
				For baud rates < 115200, only 256 is allowed For baud rates >= 115200, 256 and 1024 are both allowed
9-12	Reserved	UINT32	Any	
13-16	Reserved	UINT32	Any	
17	Checksum	UINT8	Any	
18	Delimiter 1	UINT8	0x10	End of packet 1
19	Delimiter 2	UINT8	0x03	End of packet 2

Send Data Frame

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA0	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	1: Set
6	Command	UINT8	Any	0x01: Send Data frame
7-10	Frame Number	UINT32		Frame Number starting from 1 to (including) N
11-14	Total Frames	UINT32		
15 - (15 +frame size) (=X)	Data		Any	Image that needs to be loaded
X + 1 - X + 2	Checksum	UINT8	Any	
X + 3 - X + 4	Delimiter 1	UINT8	0x10	End of packet 1
X + 5 - X + 6	Delimiter 2	UINT8	0x03	End of packet 2

Firmware Upload ACK/NACK

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA0	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	Command	UINT8	Any	Command for which ACK/NACK is sent
				NOTE - For the final ACK or timeout NACK, this field will have a value of 0x01 (program slot)
7	Status	UINT8	0-0x2C	0x00: ACK (for fw request) 0x01: ACK for frame N 0x02: ACK for successful write to slot N 0x03: ACK for successful slot erase 0x20: NACK for invalid file checksum, stop update process 0x21: NACK for extra data in frame or less data, resend frame with requested frame size 0x22: NACK for timeout, stop update process 0x23: NACK for frame size 0x24: NACK for frame number, resend frame 0x25: NACK for invalid command 0x26: NACK for unsuccessful slot erase 0x27: NACK for unsuccessful write to slot N, stop update 0x28: NACK, update in process 0x29: NACK for invalid image checksum, stop update process 0x2A: NACK for invalid file header ID, stop update process 0x2B: NACK for invalid image header name, stop update process 0x2C: NACK for invalid number of images in file 0x2D: NACK for number of retries exceeded
				NOTE - In case of packet checksum error, host will receive checksum error message and host will have to resend frame.
8-11	Frame	UINT32	Any	Contents valid only if status is 0x01, 0x21, 0x24. For all other status return contents is undefined.
12	Checksum	UINT8	Any	
13	Delimiter 1	UINT8	0x10	End of packet 1
14	Delimiter 2	UINT8	0x03	End of packet 2

After the last data frame is sent the unit will generate an additional ACK. The ACK for successful write to Slot N is sent only if the slot was erased and programmed successfully. Else, the corresponding NACK status is sent (0x20, 0x26 or 0x29).

Switch slots and restart (0xA0-01)

Use TSIP packet 0xA0-01 to switch the active firmware slot being used by the system. This will reset the system and start from the inactive slot

Set

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA0	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0-1	1: Set
6 - 9	Reserved	UINT32	Any	
10 - 13	Reserved	UINT32	Any	
14	Checksum	UINT8	Any	
15	Delimiter 1	UINT8	0x10	End of packet 1
16	Delimiter 2	UINT8	0x03	End of packet 2

Set example:

10 A0 01 00 0A 01 00 00 00 00 00 00 00 AA 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA0	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0-2	2: Response
6	Status	UINT8	0-1	0x00 : Restarting receiver
				0x01 : Running latest firmware

Byte	Item	Туре	Value	Description
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Timing Information (0xA1-00)

Use TSIP packet 0xA1-00 to obtain the timing information of the receiver.

This packet provides Week number, Time-of-week (TOW), UTC integer offset, time flags, data and time-of-day (TOD), PPS Quantization error and Bias/Bias Rate information.

If this packet is queried, a response will be transmitted shortly after the PPS pulse to which it refers.

This packet will generate once per second automatically as a default set and you can clear the automatic output on Receiver Configuration (0x91-05).

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A1 00 00 02 00 A3 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6-9	Time of Week	UINT32	Any	Time of week

Byte	Item	Туре	Value	Description
10-11	Week Number	UINT16	Any	Week number
12	Hours	UINT8	0-23	Hours
13	Minutes	UINT8	0-59	Minutes
14	Seconds	UINT8	0-59	Seconds
15	Month	UINT8	1-12	Month
16	Day of month	UINT8	1-31	Day of month
17-18	Year	UINT16	Any	Four digits of year
19	Time base	UINT8	Any	Bit 2:0:
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
20	PPS base	UINT8	Any	Bit 2:0:
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
21	Flags	UINT8		Bit 0:
				0: UTC invalid 1: UTC valid
				Bit 1:
				0: Time invalid 1: Time valid
22-23	UTC Offset	SINT16	Any	UTC offset from chosen constellation time
24-27	PPS Quantization Error	SINGLE	Any	Quantization error, in nanoseconds.
28-31	Bias	SINGLE	Any	In seconds
32-35	Bias rate	SINGLE	Any	In seconds/second

Byte	Item	Туре	Value	Description
36	Checksum	UINT8	Any	
37	Delimiter 1	UINT8	0x10	End of packet 1
38	Delimiter 2	UINT8	0x03	End of packet 2

Response Example:

10 A1 00 00 20 02 00 05 29 98 08 50 15 3A 30 0A 15 07 E4 00 00 03 00 12 3F B3 9E 72 40 42 37 EB 42 79 87 11 8E 10 03

Timing UTC Offsets (0xA1-01)

Use TSIP packet 0xA1-01 to obtain the timing UTC Offsets.

Response packet returns the time and phase offset computed from the transmitted UTC parameters.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Туре	UINT8	Any	Timebase of UTC offset desired. One of :
				0xFF: Time base defined in 0x91-03 configuration 0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A1 01 00 03 00 0F AC 10 03

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x01	Subpacket ID

Byte	Item	Туре	Value	Description
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Time base	UINT8	Any	Time base of UTC offset returned:
				0: GPS 1: GLO 2: BDS 3: GAL 4: NAV
7	Valid	UINT8	0-1	1 if valid data, 0 if invalid.
				If invalid rest of fields are meaningless
8-9	Week Number	UINT16	Any	Week number for offset computation
10-13	TOW	UINT32	0-604799	Time of week for offset computation
14	DeltaLS	UINT8	Any	Current transmitted (not computed) leap second offset, positive or negative (seconds)
15-22	Offset	DBL	Any	Current UTC offset for this constellation to the country of origin UTC(ns)
23	Checksum	UINT8	Any	
24	Delimiter 1	UINT8	0x10	End of packet 1
25	Delimiter 2	UINT8	0x03	End of packet 2

Timing Transmitted Clock Corrections (0xA1-02)

Use TSIP packet 0xA1-02 is to obtain the timing transmitted clock corrections.

Allows querying of the currently transmitted clock offsets between GPS and other constellations. This data is only available if constellations other than just GPS (or QZSS) are enabled.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x02	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A1 02 00 02 00 A1 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x02	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	Valid flags	UINT8	Any	Bit flags of valid data. If bit is set then offset value indicated is valid:
				Bit 0 : GPS (for completeness only) Bit 1: GLO Bit 2: BDS Bit 3: GAL Bit 4: NAV
7-8	Week Number	UINT16	Any	Week number for computation
9-12	TOW	UINT32	0-604799	Time of week for computation
13-16	GPS-GPS offset, ns	SINGLE	Any	Transmitted offset between GPS and GPS, always '0.0', for completeness only
17-20	GPS-GLO offset, ns	SINGLE	Any	Transmitted offset between GPS and GLONASS, nanoseconds
21-24	GPS-BDS offset, ns	SINGLE	Any	Transmitted offset between GPS and Beidou, nanoseconds
25-28	GPS-GAL offset, ns	SINGLE	Any	Transmitted offset between GPS and Galileo, nanoseconds
29-32	GPS-NAV offset, ns	SINGLE	Any	Transmitted offset between GPS and Navic, nanoseconds
33	Checksum	UINT8	Any	
34	Delimiter 1	UINT8	0x10	End of packet 1
35	Delimiter 2	UINT8	0x03	End of packet 2

Event Capture Information (0xA1-06)

Use TSIP 0xA1-06 packet to obtain the event capture configuration.

This packet provide timing information when an event input is captured or queried.

This packet will generate once per second automatically if it is set to enable on Receiver Configuration (0x91-05).

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x06	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A1 06 00 02 00 A1 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x06	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6-9	Event Count	UINT32	Any	Event count for this event, if unchanged from last response then no new event

Byte	Item	Туре	Value	Description
10-17	Fractional Second	Double	Any	Time elapsed since last PPS in seconds
18-21	Time of Week	UINT32	Any	Time of week of last PPS in seconds
22-23	Week Number	UINT16	Any	Week number of last PPS
24	Hours	UINT8	0-23	Hours
25	Minutes	UINT8	0-59	Minutes
26	Seconds	UINT8	0-59	Seconds
27	Month	UINT8	1-12	Month
28	Day of month	UINT8	1-31	Day of month
29-30	Year	UINT16	Any	Four digits of year
31	Time base	UINT8		Bit 2:0 0: GPS 1: GLO 2: BDS 3: GAL Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
				Timebase set via 0x91-03
32	PPS base	UINT8		Bit 2:0 0: GPS 1: GLO 2: BDS 3: GAL
				Bit 3 - UTC (UTC according to the constellation set in bit 0-bit 2)
33	Checksum	UINT8	Any	
34	Delimiter 1	UINT8	0x10	End of packet 1
35	Delimiter 2	UINT8	0x03	End of packet 2

Position Information (0xA1-11)

Use TSIP 0xA1-11 packet to obtain the position information of the receiver.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x11	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Position Mask	UINT8	Any	Bit 0
				0: Real time position 1: Surveyed position
				Bit 1
				0: LLA 1: XYZ ECEF
				Bit 2
				0: HAE 1: MSL
				Bit 3
				0: Velocity ENU 1: Velocity ECEF
				0xFF to use position mask from device
				0xFF assumed if field not present
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A1 11 00 03 00 00 B3 10 03

10 A1 11 00 03 00 04 B7 10 03

10 A1 11 00 03 00 02 B1 10 03

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x11	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Position	UINT8	Any	Bit 0
	Mask			Real time position Surveyed position
				Bit 1
				0: LLA 1: XYZ ECEF
				Bit 2
				0: HAE 1: MSL
				Note: Ignore if bit 1 is 1
				Bit 3
				0: Velocity ENU 1: Velocity ECEF
7	Fix Type	UINT8	0-2	0: No fix 1: 2D fix 2: 3D Fix
8-15	Latitude/X	DOUBLE	Any	Latitude in degrees
0 10	Latitudo//	DOOBLE	7 d 1 y	X in meters
16-23	Longitude/Y	DOUBLE	Any	Longitude in degrees
	3		,	Y in meters
24-31	Altitude/Z	DOUBLE	Any	Altitude in meters
			-	Z in meters
32-35	X Velocity/ East Velocity	SINGLE	Any	Both in meters/second East velocity:
				+ For east, - for west

Byte	Item	Туре	Value	Description
36-39	Y Velocity/	SINGLE	Any	Both in meters/second
	North Velocity			North velocity:
	Velocity			+ For north, - for south
40-43	,	SINGLE	Any	Both in meters/second
	Up Velocity			Up velocity:
				+ For up, - for down
44-47	PDOP	SINGLE	Any	If surveyed position is queried this field will report the value below which fixes were included. For example, 10 indicates all fixes included in surveying of position had a PDOP below 10.
				Else, this field indicates current measurement PDOP.
48-51	48-51 Horizontal Uncertainty		>0	Horizontal position uncertainty
			<=100	If surveyed position is queried this field will report the value below which fixes were included. For example, 10 indicates all fixes included in surveying of position had horizontal uncertainty below 10.
				Else, this field indicates current measurement uncertainty
52-55	Vertical	SINGLE	>0	Vertical position uncertainty
	Uncertainty		<=100	If surveyed position is queried this field will report the value below which fixes were included. For example, 10 indicates all fixes included in surveying of position had vertical uncertainty below 10.
				Else, this field indicates current measurement uncertainty
56	Checksum	UINT8	Any	
57	Delimiter 1	UINT8	0x10	End of packet 1
58	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 A1 11 00 34 02 04 02 40 42 AB 47 39 7A 75 11 C0 5E 7F 70 73 9B 02 4F 40 42 C8 10 62 4D D2 F2 BA 9A A0 86 BA F8 FA 41 3B 83 12 6F 3F 54 7A E1 40 25 71 67 40 DD 3F 7D CE 10 03

Measured offsets between constellations and frequencies Information (0xA1-22)

Use TSIP 0xA1-22 packet to obtain Measured offsets between constellations and frequencies

To provide customers with a metric that can indicate spoofing we can return the current measured offsets between constellations.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UNIT8	0x03	End of packet 2

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA1	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6-9	Valid flags	UINT32	Any	Bit flags of valid data. If bit is set then offset value indicated is valid:
				Bit 0 - GPS L1C Bit 1 - Reserved Bit 2 - GPS L5 Bit 3 - Reserved Bit 4 - GLONASS G1 Bit 5 - Reserved Bit 6,7 - Reserved Bit 8 - Reserved Bit 9 - Reserved Bit 10 - Reserved Bit 11 - Reserved Bit 12 - Beidou B1

Software

-				Softwo
				Bit 13 - Reserved Bit 14 - Beidou B2a Bit 15 - Reserved Bit 16 - Galileo E1 Bit 17 - Galileo E5a Bit 18 - Reserved Bit 19 - Reserved Bit 20 - Reserved Bit 21 - QZSS L1C Bit 22 - Reserved Bit 23 - QZSS L5 Bit 24 - Reserved Bit 25 - Reserved Bit 27 - Reserved Bit 27 - Reserved Bit 28-31 - Reserved
10-11	Week Number	UNIT16	Any	Week number for computation
12-15	TOW	UNIT32	0-604799	Time of the week computation
16-19	GPS L1 offset	SINGLE	Any	Measured offset between GPS L1 and the bias estimate, nanoseconds
20-23	GPS L5 offset	SINGLE	Any	Measured offset between GPS L5 and the bias estimate, nanoseconds
24-27	GLONASS offset	SINGLE	Any	Measured offset between GLONASS and the bias estimate, nanoseconds
28-31	Beidu B1 offset	SINGLE	Any	Measured offset between Beidou B1 and the bias estimate, nanoseconds
32-35	Beidou B2a offset	SINGLE	Any	Measured offset between Beidou B2a and the bias estimate, nanoseconds
36-39	Galileo E1 offset	SINGLE	Any	Measured offset between Galileo E1 and the bias estimate, nanoseconds
40-43	Galileo E5a offset	SINGLE	Any	Measured offset between Galileo E5a and the bias estimate, nanoseconds
44-47	QZSS L1 offset	SINGLE	Any	Measured offset between QZSS L1 and the bias estimate, nanoseconds
48-51	QZSS L5 offset	SINGLE	Any	Measured offset between QZSS L5 and the bias estimate, nanoseconds
52-55	NavIC L5 offset	SINGLE	Any	Measured offset between NavIC L5 and the bias estimate, nanoseconds
56	Checksum	UINT8	Any	
57	Delimiter 1	UINT8	0x10	End of packet 1

58 Delimiter 2 UINT8 0x03 End of packet 2	
---	--

Query:

10 A1 22 00 02 00 81 10 03

Response example:

10 A1 22 00 34 02 00 03 50 15 09 34 00 06 5E 37 42 2B 26 DA 42 2B 94 FA 42 13 66 C7 42 12 33 B6 42 10 54 C3 42 34 03 0E 42 35 50 38 00 00 00 00 00 00 00 00 00 00 00 B7 10 03

Satellite Information (0xA2-00)

Use TSIP 0xA2-00 packet to obtain the satellite tracking information for GPS L1, GPS L5, GLONASS, Beidou B1, Bedou B2a, Galileo E1, Galileo E5a, NavIC L5, QZSS L1 and QZSS L5.

This packet will generate once per second automatically if it is set to enable on Receiver Configuration (0x91-05).

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8		0 - All satellites 1 - GPS L1C 2 - GPS L2 (Not supported, for future use) 3 - GPS L5 4 - Reserved 5 - GLONASS G1 6 - GLONASS G2 7,8 - Reserved 9 - SBAS 10,11,12 - Reserved 13 - Beidou B1 14 - Beidou B2i (Not supported, for future use) 15 - Beidou B2a 16 - Reserved 17 - Galileo E1

- 18 Galileo E5a
- 19 Galileo E5b (Not supported, for future use)
- 20 Galileo E6 (Not supported, for future use)
- 21 Reserved
- 22 QZSS L1
- 23 QZSS L2C (Not supported, for future use)
- 24 QZSS L5
- 25 Reserved
- 26 NavIC L5
- 27 255 Reserved

Byte	Item	Туре	Value	Description
7	SV PRN	UINT8	0-32	0 - All satellites in selected SV type non-zero - SV PRN
8	Checksum	UINT8	Any	
9	Delimiter 1	UINT8	0x10	End of packet 1
10	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A2 00 00 04 00 00 00 A6 10 03

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Message Number	UINT8	Any	Message number starting from 1

Byte	Item	Туре	Value	Description
7	SV Type	UINT8	Any	1 - GPS L1C 2 - GPS L2 (Not supported, for future use) 3 - GPS L5 4 - Reserved 5 - GLONASS G1
				6 - GLONASS G2 7,8 - Reserved 9 - SBAS 10,11,12 - Reserved 13 - Beidou B1 14 - Beidou B2i (Not supported, for future use) 15 - Beidou B2a 16 - Reserved 17 - Galileo E1 18 - Galileo E5a 19 - Galileo E5b (Not supported, for future use) 20 - Galileo E6 (Not supported, for future use) 21 - Reserved 22 - QZSS L1 23 - QZSS L2C (Not supported, for future use) 24 - QZSS L5 25 - Reserved 26 - NavIC L5 27 - 255 - Reserved
8	SV PRN	UINT8	Any	Non-zero - SV PRN
9-12	Azimuth angle	SINGLE		In degrees
13-16	Elevation angle	SINGLE		In degrees
17-20	Signal Level	SINGLE		dB-Hz

Byte	Item	Туре	Value	Description
21-24	Flags	UINT32		Bit 0- 0: Not acquired
				1: Acquired
				Bit 1-0: Not used in position fix
				1: Used in position fix
				Bit 2- 0: Not used in timing fix
				1: Used in timing fix
				Bit 15 - Bit 8- Satellite status, see table "Satellites Status Meaning" below.
25-28	Time of last measurement	UINT32		TOW in seconds
29	Checksum	UINT8	Any	
30	Delimiter 1	UINT8	0x10	End of packet 1
31	Delimiter 2	UINT8	0x03	End of packet 2

NOTE - There will be one message per satellite sent by the receiver.

If data is not available or 0 satellites:

10 A2 00 00 02 02 A2 10 03

Table. Satellite Status Meaning

Description	Value	Comment	
No Error	0	Satellite fully usable in timing solution.	
No Measurement	1	No measurement currently available. This is due to any reason, other than jam, but means that there is not even a low-level tracking indication for this satellite (could be an unused channel).	
No Time	2	No timing information available from the satellite.	
No Ephemeris	3	No Ephemeris information available (unused).	
No Bit Sync	4	No bit sync possible with the satellite.	
Low Elevation	5	Satellite is below the elevation mask.	
Low C/N0	6	Satellite signal level is below the CNo mask.	

Not usable	7	Satellite is being tracked, but no observable information is available.	
Rate Reject	8	Satellite is being tracked, but the measured range-rate is not valid. This is usually an indication of spoofing/multi-path.	
Bias Reject	9	Satellite is being tracked, but the measured range is not valid. This is usually a spoofing/multi-path indication.	
Millisecond error	10	Satellite has a millisecond error relative to other satellites. This can be due to jamming, spoofing or multi-path conditions.	
Low sat count	11	Number of satellites being tracked is below the minimum satellite track level so this satellite is "rejected".	
Invalid SV #	12	The satellite is being tracked, but the computed SV Id is not valid. This may be due to spoofing, or that the satellite corrections are not available for this satellite (i.e. it isn't supposed to be there at all according to other satellite information).	
Unhealthy	13	The satellite is marked unhealthy.	
Invalid Range	14	PR measurement is not valid.	
Invalid Doppler	15	System unable to make valid Doppler measurements.	
Invalid Position	16	No valid position is available so satellite cannot be used.	
No Code/Carrier lock	17	Unable to establish both code and carrier lock to the satellite.	
Lock stable count	18	Satellite is locked but the lock status has not been stable long enough to validate (SV_MIN_LOCK_TIME_MS).	
No dual- frequency info	19	There is not dual-frequency information for this satellite (like GLONASS or GPS that has no L5).	

Not primary frequency	20	This is a placeholder as the satellite cannot be used twice in a computation of timing information. The secondary frequency is used to compute offsets, but the satellite information cannot be used twice in the solution (or the solution will not be correct). This is also used as the system, currently, will only use secondary frequency as an augmentation of the primary.
No residual	21	The satellite residual computation could not be made. This is generally due to missing, or invalid information, from the satellite. This will normally correct itself once data is gathered, unless it is caused by spoofing that is invalidating the data.
Invalid range	22	The range computation was unable to be made due to data errors. This will normally correct itself.
High multi-path	23	A multi-path level that is too high to allow valid satellite decode has been detected.
Jammed	24	Jamming conditions have been detected on this satellite. The carrier can be tracked, but there is no meaningful data.
Spoofed	25	Spoofing conditions have been detected on this satellite. This can be across entire constellations if there is a discrepancy of a single constellation relative to others.
Sat disabled	26	This satellite has been disabled.

Raw UTC Parameters (0xA2-20)

Use TSIP packet 0xA2-20 to obtain the raw UTC parameters.

Query

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x20	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8	0-4	0: GPS 1: GLONASS 2: BeiDou 3: Galileo 4: NavIC
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

GPS: 10 A2 20 00 03 00 00 81 10 03

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x20	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6	SV Type	UINT8	0-4	0: GPS 1: GLONASS 2: BeiDou 3: Galileo 4: NavIC
7	Valid	UINT8	0-1	0: Invalid data 1: Valid data
				If 0, ignore rest of data
8-11	A0	INT32	GPS:2^- 30 GLO: 2^- 31 BEI: 2^-30 GAL: 2^- 30 NAV: 2^- 35	Delta time due to current leap seconds (seconds)
12-15	A1	INT32	GPS:2^- 50 BEI: 2^-50 GAL: 2^- 50 NAV: 2^- 51	UTC rate (seconds/second)
16	ΔTLS	INT8	-	Delta time due to current leap seconds (seconds)
17	ΔTLSF	INT8	-	Delta time after leap second change (seconds)
18	ТОТ	UINT8	GPS: 2^12 GAL: 3600 NAV: 16	Reference time of week (seconds)
19	WN⊤	UINT8	-	Reference week number (weeks)
20	WNLSF	UINT8	-	Week when the leap second change occurs (weeks)
21	DN	UINT8	-	Day at end of which leap second changes (days)
22	Checksum	UINT8	Any	

Byte	Item	Туре	Value	Description
23	Delimiter 1	UINT8	0x10	End of packet 1
24	Delimiter 2	UINT8	0x03	End of packet 2

Response example for invalid GPS or not retrieved yet:

Almanac Health Report (0xA2-21)

Use TSIP packet 0xA2-21 to obtain the Almanac health report.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x21	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8	0-4	0: GPS 1: GLONASS 2: BeiDou 3: Galileo 4: NavIC
7	Checksum	UINT8	Any	
8	Delimiter 1	UINT8	0x10	End of packet 1
9	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

GPS: 10 A2 21 00 03 00 00 81 10 03

GPS, GLONASS, Galileo, and NavIC Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x21	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	0, 1, 3, or 4	0: GPS 1: GLONASS 3: Galileo 4: NavIC

Byte	Item	Туре	Value	Description
7	Satellite Count	UINT8	Any	Depends on SV Type
8	Health of satellite 1	UINT8	Any	0: Healthy, > 0: Unhealthy
9	Health of satellite 2	UINT8	Any	See byte 8
	•••	•••	•••	
X + 7	Health of satellite X	UINT8	Any	See byte 8
X + 8	Checksum	UINT8	Any	
X + 9	Delimiter 1	UINT8	0x10	End of packet 1
X + 10	Delimiter 2	UINT8	0x03	End of packet 2

BeiDou Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x21	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	2	2: BeiDou
7	Satellite Count	UINT8	63	BeiDou satellite count
8-9	Health of satellite 1	UINT16	Any	0: Healthy, > 0: Unhealthy
10-11	Health of satellite 2	UINT16	Any	See byte 8-9
132-133	Health of satellite X	UINT16	Any	See byte 8-9
134	Checksum	UINT8	Any	
135	Delimiter 1	UINT8	0x10	End of packet 1
136	Delimiter 2	UINT8	0x03	End of packet 2

Raw Almanac (0xA2-22)

Use TSIP packet 0xA2-22 to obtain the raw almanac data of each GNSS satellite.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8	0-4	0: GPS 1: GLONASS 2: BeiDou 3: Galileo 4: NavIC
7	SV PRN	UINT8	Any	Satellite number
8	Checksum	UINT8	Any	
9	Delimiter 1	UINT8	0x10	End of packet 1
10	Delimiter 2	UINT8	0x03	End of packet 2

GPS Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	0	0: GPS
7	SV PRN	UINT8	1-32	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data

9 WN _a 10 Health	UINT8	Any	Almanac reference week
10 Health			number
	UINT8	Any	Health of the satellite.
			See table 20-VII in ICD for more info. 0 is all data good.
11 T ₀₀	UINT8	2^12	Almanac reference time (seconds)
12-13 e	UINT16	2^-21	Eccentricity (dimensionless)
14-17 √A	UINT32	2^-11	Square root of semi-major axis (\sqrt{m})
18-19 δ _i	INT16	2^-19	Correction of orbit reference inclination at reference time (semi-circles)
			*io relative to 0.30 semi-circles
20-21 α΄	INT16	2^-38	Rate of right ascension (semi- circles/second)
22-25 Ω ₀	INT32	2^-23	Longitude of ascending node of orbital plane according to reference time (semi-circles)
26-29	INT32	2^-23	Argument of perigee (semicircles)
30-33 M ₀	INT32	2^-23	Mean anomaly at ref time (semi- circles)
34-35 an	INT16	2^-20	Satellite clock bias (seconds)
36-37 a _{f1}	INT16	2^-38	Satellite clock rate (seconds/second)
38 Checksum	UINT8	Any	
39 Delimiter 1	UINT8	0x10	End of packet 1
40 Delimiter 2	UINT8	0x03	End of packet 2

GLONASS Response

Byte	ltem	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet

Byte	Item	Туре	Value	Description
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	1	1: GLONASS
7	SV PRN	UINT8	1-24	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9-10	N	UINT16	1-1461	Reference calendar day number of almanac within the four-year period (days)
11	С	UINT8	0-1	Flag at instant of upload
				0: Inoperable 1: Operable
12	L	UINT8	0-1	Flag for health
_				0: Healthy 1: Malfunction
13	M	UINT8	0-3	Type of satellite:
				"00" is GLONASS, "01" is GLONASS-M
14	Н	UINT8	0-31	Carrier frequency number of navigation RF signal
15-16	tau	UINT16	2^-18	Coarse time correction to GLONASS time (seconds)
17-20	tλ	UINT32	2^-5	Time of first ascending node passage (seconds)
21-22	е	UINT16	2^-20	Eccentricity (dimensionless)
23-26	Δί	INT32	2^-20	Correction to mean value of inclination (semi-circles)
27-30	λ	INT32	2^-20	Longitude of first ascending node of satellite orbit in PZ-90 coordinate system (semi-circles)

Byte	Item	Туре	Value	Description
31-34	$\Delta \mathcal{T}$	INT32	2^-9	Correction to mean value of Draconian period (seconds/orbital period)
35	Δ* Τ	INT8	2^-14	Rate of change of Draconian period (seconds/orbital period^2)
36-37		INT16	2^-15	Argument of perigee (semicircles)
38	Checksum	UINT8	Any	
39	Delimiter 1	UINT8	0x10	End of packet 1
40	Delimiter 2	UINT8	0x03	End of packet 2

BeiDou Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	2	2: BeiDou
7	SV PRN	UINT8	1-63	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9	WNa	UINT8	Any	Almanac reference week
10-13	SOW	UINT32	Any	Seconds of week
14	Тоа	UINT8	2^12	Almanac reference time (seconds)
15-18	е	UINT32	2^-21	Eccentricity (dimensionless)
19-22	√A	UINT32	2^-11	Square root of semi-major axis (√m)

Byte	Item	Туре	Value	Description
23-24	δ_{i}	INT16	2^-19	Correction of orbit reference inclination at reference time (semi-circles)
25-28	Ω	INT16	2^-38	Rate of right ascension (semi- circles/second)
29-32	Ω 0	INT32	2^-23	Longitude of ascending node of orbital plane according to reference time (semi-circles)
33-36		INT32	2^-23	Argument of perigee (semicircles)
37-40	Mo	INT32	2^-23	Mean anomaly at ref time (semi- circles)
41-42	a ₀	INT16	2^-20	Satellite clock bias (seconds)
43-44	a ₁	INT16	2^-38	Satellite clock rate (seconds/second)
45	Checksum	UINT8	Any	
46	Delimiter 1	UINT8	0x10	End of packet 1
47	Delimiter 2	UINT8	0x03	End of packet 2

Galileo Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	3	3 : Galileo
7	SV PRN	UINT8	1-36	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9-10	WN	UINT16	Any	Sequential week number from the GST start epoch

Byte	Item	Туре	Value	Description
11	E1-B _{HS}	UINT8	Any	Satellite E1-B/C signal health status
12	E5b _{HS}	UINT8	Any	Satellite E5b signal health status
13-14	е	UINT16	2^-16	Eccentricity (dimensionless)
15-16	Δ√Α	UINT16	2^-9	Difference between the square root of semi-major axis and square root of nominal semi-major axis (29,600km) (\sqrt{m})
17-18	δί	INT16	2^-14	Inclination at reference time relative to i ₀ = 56° (semi-circles)
19-20	Ω	INT16	2^-33	Rate of right ascension (semi- circles/second)
21-22	Ωο	INT16	2^-15	Longitude of ascending node of orbital plane at weekly epoch (semi-circles)
23-24		INT16	2^-15	Argument of perigee (semicircles)
25-26	Mo	INT16	2^-15	Mean anomaly at ref time (semi- circles)
27-28	a ro	INT16	2^-19	Satellite clock bias "truncated" (seconds)
29-30	а п	INT16	2^-38	Satellite clock rate "truncated" (seconds/second)
31	Checksum	UINT8	Any	
32	Delimiter 1	UINT8	0x10	End of packet 1
33	Delimiter 2	UINT8	0x03	End of packet 2

NavIC Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x22	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum

Byte	Item	Туре	Value	Description
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	4	4 : NavIC
7	SV PRN	UINT8	1-36	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9-10	WN₃	UINT8	Any	Almanac reference week number
11-12	Тоа	UINT1	2^4	Almanac reference time (seconds)
13-14	е	UINT16	2^-21	Eccentricity (dimensionless)
15-18	√A	UINT32	2^-11	Square root of semi-major axis (\sqrt{m})
19-22	İo	INT32	2^-23	Inclination (semi-circles)
23-24	Ω΄	INT16	2^-38	Rate of RAAN (semi- circles/second)
25-28	Ω0	INT32	2^-23	Longitude of ascending node (LAN) (semi-circles)
29-32		INT32	2^-23	Argument of perigee (semicircles)
33-36	Mo	INT32	2^-23	Mean anomaly at ref time (semi-circles)
37-38	аю	INT16	2^-20	Satellite clock bias (seconds)
39-40	a n	INT16	2^-38	Satellite clock rate (seconds/second)
41	Inter Signal Correction	INT8	2^-31	(seconds)
42	Checksum	UINT8	Any	
43	Delimiter 1	UINT8	0x10	End of packet 1
44	Delimiter 2	UINT8	0x03	End of packet 2

Raw Ephermeris (0xA2-23)

Use TSIP packet 0xA2-23 to obtain the raw ephemeris data of each GNSS satellite.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8	0-3	0: GPS 1: GLONASS 2: BeiDou 3: Galileo 4: NavIC
7	SV PRN	UINT8	Any	Satellite number
8	Checksum	UINT8	Any	
9	Delimiter 1	UINT8	0x10	End of packet 1
10	Delimiter 2	UINT8	0x03	End of packet 2

GPS Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	0	0: GPS
7	SV PRN	UINT8	1-32	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data

Byte	Item	Туре	Value	Description
9-10	WN	UINT16	Any	Data sequence propagation week number
11	Health	UINT8	Any	SV health
12	IODE	UINT8	Any	Issue of Data, Ephemeris
13-14	IODC	UINT16	Any	Issue of Data, Clock
15	URA	UINT8	Any	User Range Accuracy Index
16	Fit	UINT8	Any	Fit interval flag
17-18	toc	UINT16	2^4	Clock data reference time
			0-604,784	(seconds)
19-20	toe	UINT16	2^4	Ephemeris reference time
			0-604,784	(seconds)
21	T _{GD}	INT8	2^-31	Group delay differential (seconds)
22-25	аю	INT32	2^-31	Time polynomial coefficient 0 (seconds)
26-27	a rı	INT16	2^-43	Time polynomial coefficient 1 (seconds/second)
28	a f2	INT8	2^-55	Time polynomial coefficient 2 (seconds/second^2)
29-30	Δ_n	INT16	2^-43	Mean motion difference from computed value (semi-circles/second)
31-34	M_0	INT32	2^-31	Mean anomaly at reference time (semi-circles)
35-38	е	UINT32	2^-33	Eccentricity
			0-0.03	(dimensionless)
39-42	√A	UINT32	2^-19	Square root of the semi-
			2530- 8192	major axis (meters^0.5)

Byte	Item	Туре	Value	Description
43-46	lo	INT32	2^-31	Inclination angle at reference time (semicircles)
47-48	C _{rs}	INT16	2^-5	Amplitude of the sine harmonic correction term to the orbit radius (meters)
49-50	Crc	INT16	2^-5	Amplitude of the cosine harmonic correction term to the orbit radius (meters
51-52	Cus	INT16	2^-29	Amplitude of the sine harmonic correction term to the argument of latitude (radians)
53-54	Cuc	INT16	2^-29	Amplitude of the cosine harmonic correction term to the argument of latitude (radians)
55-56	Cis	INT16	2^-29	Amplitude of the sine harmonic correction term to the angle of inclination (radians)
57-58	Cic	INT16	2^-29	Amplitude of the cosine harmonic correction term to the angle of inclination (radians)
59-62		INT32	2^-31	Argument of perigee (semi-circles)
63-66	Ω_0	INT32	2^-31	Longitude of ascending node of orbit plane at weekly epoch (semicircles)
67-70	Ω	INT32	2^-43	Rate of right ascension
			-6.33e-7- 0	(semi-circles/second)
71-72	IDOT	INT16	2^-43	Rate of inclination angle (semi-circles/second)
73	Checksum	UINT8	Any	
74	Delimiter 1	UINT8	0x10	End of packet 1

Byte	Item	Туре	Value	Description
75	Delimiter 2	UINT8	0x03	End of packet 2

GLONASS Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	1	1: GLONASS
7	SV PRN	UINT8	1-24	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9	М	UINT8	0-3	Type of satellite: "00" is GLONASS, "01" is GLONASS-M
10	В	UINT8	0-7	Health flag
11	L	UINT8	0-1	Health flag (1 is malfunction)

Byte	Item	Туре	Value	Description
12	P flags	UINT8	Any	P indicates satellite operation mode with respect to time parameters.
				P1 indicates a time interval between two adjacent values of tb parameter (in minutes)
				P2 is a flag of oddness ("1") or evenness ("0") of the value of tb (for intervals 30 or 60 minutes)
				P3 is a flag indicating a number of satellites for which almanac is transmitted within a given frame: 1 corresponds to five satellites and 0 corresponds to four satellites.
				P4 is a flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment
				Bit mapping: 0,1: P 2,3: P1 4: P2 5: P3 6: P4

Byte	Item	Туре	Value	Description
13-14	Tk	UINT16	0-23 hours 0-59 mins 0 or 30 seconds	Time into the current date that this data was first decoded. First five MSB bits are hours, next six bits are minutes, and LSB is seconds.
15	Ть	UINT8	15	Index of a time interval within current day according to UTC(SU) (minutes)
16-17	NT	UINT16	0-1461	Current date, calendar number of day within four-year interval starting from the 1-st of January in a leap year (days)
18	FT	UINT8	Any	User range accuracy
19-22	Tau	INT32	2^-30	SV clock bias (seconds)
23	ΔT _{au}	INT8	2^-30	Time difference between L2 and L1 band (seconds)
24	E	UINT8	0-31	Characterizes "age" of a current information, that is the time slice which has transited from the moment of calculation at instant Tb (days)
25-26	У	INT16	2^-40	Relative carrier frequency deviation
27-30	Х	INT32	2^-11	x coordinate (PZ-90.02) of SV on an instant t _b
31-34	У	INT32	2^-11	y coordinate (PZ-90.02) of SV on an instant t _b
35-38	Z	INT32	2^-11	z coordinate (PZ-90.02) of SV on an instant t _b
39-42	dx	INT32	2^-20	x component (PZ-90.02) of vector velocity of SV on an instant t _b

Byte	Item	Туре	Value	Description
43-46	dy	INT32	2^-20	y component (PZ-90.02) of vector velocity of SV on an instant t _b
47-50	dz	INT32	2^-20	z component (PZ-90.02) of vector velocity of SV on an instant t _b
51	ddx	INT8	2^-30	x component (PZ-90.02) speedups of SV on an instant t _b
52	ddy	INT8	2^-30	y component (PZ-90.02) speedups of SV on an instant t _b
53	ddz	INT8	2^-30	z component (PZ-90.02) speedups of SV on an instant t _b
54	Checksum	UINT8	Any	
55	Delimiter 1	UINT8	0x10	End of packet 1
56	Delimiter 2	UINT8	0x03	End of packet 2

BeiDou Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	2	2: BeiDou
7	SV PRN	UINT8	1-63	Satellite number GEO: 1-5, 59-63 MEO: 6-58
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data

Byte	Item	Туре	Value	Description
9-10	WN	UINT16	Any	Data sequence propagation week number
11-14	SOW	UINT32	Any	Seconds of week that have occurred since last Sunday,
				00:00:00 of BDT. (MEO only, GEO is 0)
15	Health	UINT8	Any	Autonomous satellite health flag (0 is good)
16	AODE	UINT8	Any	Age of data, ephemeris
17	AODC	UINT8	Any	Age of data, clock
18	URAI	UINT8	Any	User Range Accuracy Index
19-22	toc	UINT16	2^4	Clock data reference
			0-604,784	time (seconds)
23-26	toe	UINT16	2^4	Ephemeris reference
			0-604,784	time (seconds)
27-28	T _{GD1}	INT16	0.1	Equipment group delay differential (nanoseconds)
29-30	T _{GD2}	INT16	0.1	Equipment group delay differential (nanoseconds)
31-34	a ₀	INT32	2^-33	Time polynomial coefficient 0 (seconds)
35-38	a ₁	INT32	2^-50	Time polynomial coefficient 1 (seconds/second)
39-40	a ₂	INT16	2^-66	Time polynomial coefficient 2 (seconds/second^2)
41-42	Δ_{n}	INT16	2^-43 ±3.73x10-9	Mean motion difference from computed value (pi/second)

Byte	Item	Туре	Value	Description
43-46	Mo	INT32	2^-31 ±1	Mean anomaly at reference time (pi)
47-50	е	UINT32	2^-33	Eccentricity
			0 - 0.5	(dimensionless)
51-54	√A	UINT32	2^-19	Square root of the semi-
			0-8,192	major axis (meters^0.5)
55-58	lo	INT32	2^-31 ±1	Inclination angle at reference time (pi)
59-62	Crs	INT32	2^-6 ±2048	Amplitude of the sine harmonic correction term to the orbit radius (meters)
63-66	Crc	INT32	2^-6 ±2048	Amplitude of the cosine harmonic correction term to the orbit radius (meters)
67-70	Cus	INT32	2^-31	Amplitude of the sine
			±6.10x10-5	harmonic correction term to the argument of latitude (radians)
71-74	Cuc	INT32	2^-31	Amplitude of the cosine
			±6.10x10-5	harmonic correction term to the argument of latitude (radians)
75-78	Cis	INT32	2^-31	Amplitude of the sine
			±6.10x10-5	harmonic correction term to the angle of inclination (radians)
79-82	Cic	INT32	2^-31	Amplitude of the cosine
			±6.10x10-5	harmonic correction term to the angle of inclination (radians)
83-86		INT32	2^-31 ±1	Argument of perigee (pi)
87-90	Ω_0	INT32	2^-31 ±1	Longitude of ascending node of orbit plane at weekly epoch (pi)

Byte	Item	Туре	Value	Description	
91-94	Ω΄	INT32	2^-43	Rate of right ascension	
			±9.54x10-7	(pi/second)	
95-96	IDOT	INT16	2^-43	Rate of inclination angle	
			±9.31x10- 10	(pi/second)	
97	Checksum	UINT8	Any		
98	Delimiter 1	UINT8	0x10	End of packet 1	
99	Delimiter 2	UINT8	0x03	End of packet 2	

Galileo Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	3	3: Galileo
7	SV PRN	UINT8	1-32	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9-10	WN	UINT16	Any	Week number
11-14	TOW	UINT32	Any	Time of week
15	Е1-Внѕ	UINT8	Any	Satellite E1-B/C signal health status
16	Е5b нs	UINT8	Any	Satellite E5b signal health status
17-18	BGD(E1, E5a)	INT16	2^-32	E1-E5a broadcast group delay (seconds)
19-20	BGD(E1, E5b)	INT16	2^-32	E1-E5b broadcast group delay (seconds)
21	E1-B _{DVS}	UINT8	Any	1-B data validity status

Byte	Item	Туре	Value	Description
22	E5b _{DVS}	UINT8	Any	E5b data validity status
23-24	IOD _{nav}	UINT16	Any	Ephemeris and clock correction issue of data
25	SISA	UINT8	Any	Signal-in-space-accuracy is a prediction of the minimum standard deviation of the unbiased Gaussian distribution which overbound the signal-in-space-error (SISE) for all possible user locations within the satellite coverage area
26-27	toc	UINT16	60	Clock data reference time of week (seconds)
28-29	toe	UINT16	60	Ephemeris reference time (seconds)
30-33	а _ю	INT32	2^-34	SV clock bias correction coefficient (seconds)
34-37	a rı	INT32	2^-46	SV clock drift correction coefficient (seconds/seconds)
38	a r2	INT8	2^-59	SV clock drift rate correction coefficient (seconds/seconds^2)
39-40	Δ_{n}	INT16	2^-43	Mean motion difference from computed value (semi-circles/second)
41-44	Mo	INT32	2^-31	Mean anomaly at reference time (semi-circles)
45-48	е	UINT32	2^-33	Eccentricity (dimensionless)
49-52	√A	UINT32	2^-19	Square root of the semi- major axis (meters^0.5)
53-56	lo	INT32	2^-31	Inclination angle at reference time (semi-circles)
57-58	Crs	INT16	2^-5	Amplitude of the sine harmonic correction term to the orbit radius (meters)

Byte	Item	Туре	Value	Description
59-60	Crc	INT16	2^-5	Amplitude of the cosine harmonic correction term to the orbit radius (meters)
61-62	Cus	INT16	2^-29	Amplitude of the sine harmonic correction term to the argument of latitude (radians)
63-64	Cuc	INT16	2^-29	Amplitude of the cosine harmonic correction term to the argument of latitude (radians)
65-66	Cis	INT16	2^-29	Amplitude of the sine harmonic correction term to the angle of inclination (radians)
67-68	Cic	INT16	2^-29	Amplitude of the cosine harmonic correction term to the angle of inclination (radians)
69-72		INT32	2^-31	Argument of perigee (semi-circles)
73-76	Ω_0	INT32	2^-31	Longitude of ascending node of orbit plane at weekly epoch (semi-circles)
77-80	Ω	INT32	2^-43	Rate of right ascension (semi-circles/second)
81-82	IDOT	INT16	2^-43	Rate of inclination angle (semi-circles/second)
83	Checksum	UINT8	Any	
84	Delimiter 1	UINT8	0x10	End of packet 1
85	Delimiter 2	UINT8	0x03	End of packet 2

NavIC Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet

Byte	Item	Туре	Value	Description
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x23	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	4	4: NavIC
7	SV PRN	UINT8	1-14	Satellite number
8	Valid	UINT8	0-1	0: Invalid data 1: Valid data
9-10	WN	UINT16	Any	Week number
11	L5 Flag	UINT8	0-1	0: all navigation data on L5 SPS signal are OK 1: some or all navigation data on L5 SPS signal are bad
12	S Flag	UINT8	0-1	0: all navigation data on S SPS signal are OK 1: some or all navigation data on S SPS signal are bad
13	URA	UINT8	Any	User Range Accuracy Index
14	IODEC	UINT8	Any	Issue of Data Ephemeris & Clock
15-16	toc	UINT16	16	Time of clock (seconds)
17-18	toe	UINT16	16	Ephemeris reference time (seconds)
19	T _{GD}	INT8	2^-31	Total group delay (seconds)
20-23	a ro	INT32	2^-31	Clock bias (seconds)
24-25	a n	INT16	2^-43	Clock drift (seconds/second)
26	a ₁₂	INT8	2^-55	Clock drift rate (seconds/second^2)
27-30	Δ_{n}	INT32	2^-41	Mean motion difference (semi-circles/second)

Byte	Item	Туре	Value	Description
31-34	M_0	INT32	2^-31	Mean anomaly at reference time (semi-circles)
35-38	е	UINT32	2^-33	Eccentricity (dimensionless)
39-42	√A	UINT32	2^-19	Square root of the semi- major axis (meters^0.5)
43-46	l ₀	INT32	2^-31	Inclination (semi-circles)
47-48	C _{rs}	INT16	2^-4	Amplitude of the sine harmonic correction term to the orbit radius (meters)
49-50	Crc	INT16	2^-4	Amplitude of the cosine harmonic correction term to the orbit radius (meters
51-52	Cus	INT16	2^-28	Amplitude of the sine harmonic correction term to the argument of latitude (radians)
53-54	Cuc	INT16	2^-28	Amplitude of the cosine harmonic correction term to the argument of latitude (radians)
55-56	Cis	INT16	2^-28	Amplitude of the sine harmonic correction term to the angle of inclination (radians)
57-58	Cic	INT16	2^-28	Amplitude of the cosine harmonic correction term to the angle of inclination (radians)
59-62		INT32	2^-31	Argument of perigee (semi-circles)
63-66	Ωο	INT32	2^-31	Longitude of ascending node of orbit plane at weekly epoch (semi-circles)
67-70	Ω΄	INT32	2^-43	Rate of right ascension (semi-circles/second)
71-72	IDOT	INT16	2^-43	Rate of inclination angle (semi-circles/second)

Byte	Item	Туре	Value	Description
73	Checksum	UINT8	Any	
74	Delimiter 1	UINT8	0x10	End of packet 1
75	Delimiter 2	UINT8	0x03	End of packet 2

Raw Ionosphere (0xA2-24)

Use TSIP packet 0xA2-24 to obtain the raw ionosphere data of each GNSS satellite.

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x24	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	SV Type	UINT8	0-3	0: GPS 1: GLO error, no model for GLO 2: BeiDou 3: Galileo 4: NavIC
7	SV PRN	UINT8	Any	Satellite number
8	Checksum	UINT8	Any	
9	Delimiter 1	UINT8	0x10	End of packet 1
10	Delimiter 2	UINT8	0x03	End of packet 2

GPS, BeiDou, and NavIC Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x24	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	0, 1 or 3	0: GPS 1: BeiDou 3: NavIC

Byte	Item	Туре	Value	Description
7	Valid	UINT8	0-1	0: Invalid data 1: Valid data
8	αο	UINT8	2^-30	seconds
9	α1	UINT8	2^-27	GPS, NavIC: sec/semi- circle BeiDou: sec/pi
10	α ₂	UINT8	2^-24	GPS, NavIC: sec/semi- circle^2 BeiDou: sec/pi^2
11	α ₃	UINT8	2^-24	GPS, NavIC: sec/semi- circle^3 BeiDou: sec/pi^3
12	β ₀	UINT8	2^11	seconds
13	β1	UINT8	2^14	GPS, NavIC: sec/semi- circle BeiDou: sec/pi
14	$oldsymbol{eta}_2$	UINT16	2^16	GPS, NavIC: sec/semi- circle^2 BeiDou: sec/pi^2
15	βз	UINT16	2^16	PS, NavIC: sec/semi- circle^2 BeiDou: sec/pi^2
16	Checksum	UINT8	Any	
17	Delimiter 1	UINT8	0x10	End of packet 1
18	Delimiter 2	UINT8	0x03	End of packet 2

Galileo Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA2	Packet ID
2	Subpacket ID	UINT8	0x24	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	SV Type	UINT8	2	2: Galileo

Byte	Item	Туре	Value	Description
7	Valid	UINT8	0-1	0: Invalid data 1: Valid data
8	αίο	UINT16	2^-2	sfu *1 sfu (solar flux unit) = 10^-22W/ (m^2Hz)
9	Q i1	INT16	2^-8	sfu/degree
10	Q 12	INT16	2^-15	sfu/degree
16	Checksum	UINT8	Any	
17	Delimiter 1	UINT8	0x10	End of packet 1
18	Delimiter 2	UINT8	0x03	End of packet 2

System Alarms (0xA3-00)

Use TSIP packet 0xA3-00 to obtain the system alarm information.

This packet will generate once per second automatically if it is set to enable on Receiver Configuration (0x91-05).

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA3	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A3 00 00 02 00 A1 10 03

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA3	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response

Byte	Item	Туре	Value	Description
6-9	Minor Alarms	UINT32		Bit 0 - Antenna open Bit 1 - Antenna shorted Bit 2 - Leap second pending Bit 3 - Total almanac status: 1 - almanac incomplete 0 - almanac complete Bit 4 - Survey in progress Bit 5 - GPS almanac status Bit 6 - GLONASS almanac status Bit 7 - BeiDou almanac status Bit 8 - Galileo almanac status Bit 9 - Leap second insertion Bit 10 - Leap second deletion
10-13	Reserved	UINT32	Any	
14-17	Major Alarms	UINT32	Any	Bit 0 - Not tracking satellites Bit 1 - PPS bad Bit 2 - PPS not generated Bit 3 - Reserved Bit 4 - Reserved Bit 5 - Reserved Bit 5 - Reserved Bit 6 - Reserved Bit 7 - Spoofing/multipath Bit 8 - Reserved
18-21	Reserved	UINT32	Any	
22	Checksum	UINT8	Any	
23	Delimiter 1	UINT8	0x10	End of packet 1
24	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 A3 00 00 12 02 00 00 00 09 FF FF FF FF 00 00 00 00 FF FF FF FF BA 10 03

Receiver Status (0xA3-11)

Use TSIP packet 0xA3-11 to obtain the receiver status information for GNSS satellites tracking. This packet will generate once per second automatically if it is set to enable on Receiver Configuration (0x91-05).

Query

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA3	Packet ID
2	Subpacket ID	UINT8	0x11	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0	0: Query
6	Checksum	UINT8	Any	
7	Delimiter 1	UINT8	0x10	End of packet 1
8	Delimiter 2	UINT8	0x03	End of packet 2

Query example:

10 A3 11 00 02 00 B0 10 03

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA3	Packet ID
2	Subpacket ID	UINT8	0x11	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Receiver Mode	UINT8	0-6	0 - 2D 1 - Full position (3D) Time only 3 - Automatic 6 - Over determined clock

Byte	Item	Туре	Value	Description
7	Status	UINT8		0 - Doing position fixes 1 - Do not have GPS time yet 2 - PDOP is too high 3 - No usable satellites 4 - Only 1 usable satellite 5 - Only 2 usable satellites 6 - Only 3 usable satellites 255 - Have GPS time fix (OD mode)
8	Self survey progress	UINT8	0-100	Survey progress, in percentage of total fixes
9-12	PDOP	SINGLE	Any	PDOP
13-16	HDOP	SINGLE	Any	HDOP
17-20	VDOP	SINGLE	Any	VDOP
21-24	TDOP	SINGLE	Any	TDOP
25-28	Temperature	SINGLE	Any	In degree celsius
29	Signal Count	UINT8	0-78	This is a count of the total number of signals in the receiver correlation channels.
				The satellites in this count can be in any state of acquisition.
30	Satellites Used	UINT8	0-78	Number of satellites actually used in the Receiver Mode computation.
				If the unit is in OD mode, used count will be the satellites used in timing,
				else it will be the satellites used in positioning
31-32	Reserved	UINT32	Any	
33	Checksum	UINT8	Any	
34	Delimiter 1	UINT8	0x10	End of packet 1
35	Delimiter 2	UINT8	0x03	End of packet 2

Response example:

10 A3 11 00 1D 02 06 FF 64 3F 81 47 AE 3F 02 8F 5C 3F 5E B8 52 3F 0A 3D 71 42 06 84 17 38 07 FF FF 93 10 03

If data is not available:

10 A3 11 00 02 02 B0 10 03

Error Codes (0xA3-21)

TSIP packet 0xA3-21 returns the error codes for TSIP query or set command.

The receiver automatically outputs this packet with an error code if received TSIP packets include undefined data.

Response

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA3	Packet ID
2	Subpacket ID	UINT8	0x21	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	2	2: Response
6	Reference packet ID	UINT8	Any	
7	Reference subpacket ID	UINT8	Any	
8	Error code	UINT8	1 - 255	1 - Parameter error
				2 - Length error
				3 - Invalid packet format
				4 - Invalid checksum
				5 - Incorrect TNL/User mode
				6 - Invalid Packet ID
				7 - Invalid subpacket ID
				8 - Update in progress
				9 - Internal error caused div by 0
				10 - Internal error (failed queuing)
				11 - Invalid setting for configuration
9	Checksum	UINT8	Any	
10	Delimiter 1	UINT8	0x10	End of packet 1
11	Delimiter 2	UINT8	0x03	End of packet 2

AGNSS (0xA4-00)

Use TSIP 0xA4-00 packet to set the assisted GNSS(AGNSS).

The Acutime 720 antenna supports Assisted GNSS, which allows the receiver to obtain a position fix even in very poor GNSS signal conditions using almanac, ephemeris, time and position data.

Set: Single Precision

Byte	Item	Туре	Value	Description
0	Start Byte	UINT8	0x10	Start of packet
1	Packet ID	UINT8	0xA4	Packet ID
2	Subpacket ID	UINT8	0x00	Subpacket ID
3-4	Length	UINT16	Any	Total length of mode + data + checksum
5	Mode	UINT8	0-2	1: Set
6	Precision	UINT8	0	Single Precision
7	Format	UINT8	0-1	NOTE - Position must be entered in WGS-84 datum.
				0: Latitude, longitude, altitude in degrees 1: Latitude, longitude, altitude in radians 2: ECEF X, Y, Z
8-11	Latitude / X	Single	Any	Latitude in radians, + for north, - for south X in meters
12-15	Longitude / Y	Single	Any	Longitude in radians, + for east, -for west Y in meters
16-19	Altitude / Z	Single		Altitude in meters, -400 to 10000, HAE Z in Meters
20-23	Horizontal Uncertainty	Single		
24-27	Vertical Uncertainty	Single		
28	Checksum	UINT8	Any	
29	Delimiter 1	UINT8	0x10	End of packet 1
30	Delimiter 2	UINT8	0x03	End of packet 2

NMEA 0183 Protocol

This provides a brief overview of the NMEA 0183 protocol, and describes both the standard and optional messages offered by the Acutime 720 antenna.

- Introduction
- NMEA 0183 communication interface
- NMEA 0183 message structure
- Field definitions
- NMEA 0183 message options
- NMEA 0183 message formats
- Exception behavior

Introduction

The National Marine Electronics Association (NMEA) protocol is an industry standard data protocol which was developed for the marine industry.

NMEA 0183 is a simple, yet comprehensive ASCII protocol which defines both the communication interface and the data format. The NMEA 0183 protocol was originally established to allow marine navigation equipment to share information. Since it is a well-established industry standard, NMEA 0183 has also gained popularity for use in applications other than marine electronics.

NMEA 0183 communication interface

The NMEA 0183 protocol allows a single source (talker) to transmit serial data over a single twisted wire pair to one or more receivers (listeners). The table below lists the standard characteristics of the NMEA 0183 data transmissions.

Signal	NMEA Standard
Baud rate	115 kbps
Data bits	8
Parity	None
Stop bits	1

NMEA 0183 message structure

The NMEA 0183 protocol covers a broad array of navigation data. This broad array of information is separated into discrete messages which convey a specific set of information. The entire protocol encompasses over 50 messages, but only a sub-set of these messages apply to a GPS receiver like the . The NMEA message structure is described below.

\$IDMSG, D1, D2, D3, D4,, Dn*CS[CR][LF]

Where:

\$ ID	Signifies the start of a message The talker identification is a two letter mnemonic which describes the source of the navigation information. The GP identification signifies a GPS source while GL will signify a GLONASS source. In the event that the information in the sentence is agnostic the ID will be GP.
MSG	The message identification is a three letter mnemonic which describes the message content and the number and order of the data fields.
,	Commas serve as delimiters for the data fields.
Dn	Each message contains multiple data fields (Dn) which are delimited by commas.
*	The asterisk serves as a checksum delimiter.
CS	The checksum field contains two ASCII characters which indicate the hexadecimal value of the checksum.
[CR][LF]	The carriage return [CR] and line feed [LF] combination terminate the message.

NMEA-0183 messages vary in length, but each message is limited to 79 characters or less. This length limitation excludes the "\$" and the [CR][LF]. The data field block, including delimiters, is limited to 74 characters or less.

Talker IDs

The message talker ID, which is the two characters immediately following the starting marker (\$) in a standard NMEA message, describes the source of data in a particular message. Specifically, it indicates the GNSS constellation to which the data is applicable. The following table lists talker IDs.

Talker ID	Constellation	Description
GN	ALL	Data combines all supported and enabled constellations on a given device.
GP	GPS	Data from GPS
BD	BEIDOU	Data from BEIDOU
GA	GALILEO	Data from GALILEO
GL	GLONASS	Data from GLONASS

Field definitions

Many of the NMEA date fields are of variable length, and the user should always use the comma delineators to parse the NMEA message date field. The following table specifies the definitions of all field types in the NMEA messages supported by Protempis:

Туре	Symbol	Definition			
Status	Α	Single character field: A=Yes, data valid, warning flag clear V=No, data invalid, warning flag set.			
Special Format F	Special Format Fields				
Latitude	1111.111	Fixed/variable length field: Degreesminutes.decimal-2 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal-fraction of minutes. Leading zeroes always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal- fraction are optional if full resolution is not required.			
Longitude	ууууу.ууу	Fixed/Variable length field: Degreesminutes.decimal-3 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal-fraction of minutes. Leading zeroes always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal- fraction are optional if full resolution is not required.			
Time	hhmmss.ss	Fixed/Variable length field: hoursminutesseconds.decimal-2 fixed digits of minutes, 2 fixed digits of seconds and a variable number of digits for decimal-fraction of seconds. Leading zeroes always included for hours, minutes, and seconds to maintain fixed length. The decimal point and associated decimal-fraction are optional if full resolution is not required.			
Defined		Some fields are specified to contain pre-defined constants, most often alpha characters. Such a field is indicated in this standard by the presence of one or more valid characters. Excluded from the list of allowable characters are the following, that are used to indicated field types within this standard: "A", "a", "c", "hh", "hhmmss.ss", "IIII.II", "x", "yyyyy.yy".			
Numeric Value fields					

Туре	Symbol	Definition
Variable	x.x	Variable length integer or floating numeric field. Optional leading and trailing zeros. The decimal point and associated decimal-fraction are optional if full resolution is not required (example: 73.10=73.1=073.1=73).
Fixed HEX	hh	Fixed length HEX numbers only, MSB on the left.
Information fields		
Fixed Alpha	aa	Fixed length field of upper-case or lower-case alpha characters.
Fixed Number	xx	Fixed length field of numeric characters.

NOTE -

- Spaces are only to be used in variable text fields.
- Units of measure fields are appropriate characters from the **Symbol** column, unless a specified unit of measure is indicated.
- Fixed length field definitions show the actual number of characters. For example, a field defined to have a fixed length of 5 HEX characters is represented as hhhhh between delimiters in a sentence definition.

NMEA 0183 message options

The Protempis[®] Acutime 720 Smart antenna can output any or all of the messages listed in the table below. In its default configuration (as shipped from the factory), the Acutime 720 Smart antenna outputs only TSIP messages. Typically, NMEA messages are output at a one second interval with the "GP" talker ID and checksums. These messages are output at all times during operation, with or without a fix. If a different set of messages has been selected (using Packet 0x91-13), and this setting has been stored in flash memory (using Packet 0x91-02), the default messages are permanently replaced until the receiver is returned to the factory default settings.

NOTE - You can configure a custom mix of the messages listed in the following table.

CAUTION - If too many messages are specified for output, you may need to increase the unit's baud rate.

Message	Description
GGA	GPS fix data
GLL	Geographic position Latitude/Longitude
GSA	GPS DOP and active satellites
GSV	GPS satellites in view
RMC	Recommended minimum specific GPS/Transit data
VTG	Track made good and ground speed
ZDA	Time and date

Acutime 720 Smart antenna proprietary NMEA messages

Message	Description
CR	Query or set GPS receiver configuration information.
NM	Query or set NMEA automatic message output control.
PT	Query or set serial port configuration.
VR	Query and response to version information

NMEA 0183 message formats

GGA - GPS Fix Data

The GGA message includes time, position and fix related data for the GNSS receiver.

This message is output automatically if selected in the NMEA message output mask. It can also be queried using the command \$GPGPQ,GGA*hh<CR><LF>

aaGGA,hhmmss.s,llll.lllx,d,yyyyy,yyyx,d,q,s,xh.hx,xaaaaa,M,xggg,M,xxx,xxxx*hh<CR><LF>

Description
Talker ID
Hours, minutes, seconds, sub-seconds of position in UTC.
Latitude
N S
Longitude
E W
Quality indicator (see Section 3.1 for more info):
0 = fix not available 1 = autonomous GNSS mode, fix valid 2 = differential/SBAS-aided GNSS mode, fix valid 4 = RTK (fixed) or RTX 5 = RTK (float) 6 = estimated/dead reckoning mode (DR)
Number of satellites in use
HDOP
Antenna altitude, meters MSL
Geoidal separation, meters. This is the difference between the earth ellipsoid and mean-sea-level (geoid) defined by the reference datum used in the position solution. A negative value indicates the mean-sea-level is below ellipsoid.
Age of differential corrections data
Differential reference station ID
checksum

GLL - Geographic Position - Latitude/Longitude

The GLL message contains the latitude and longitude of the present vessel position, the time of the position fix and the status.

This message is output automatically if selected in the NMEA message output mask. It can also be queried using the command \$GPGPQ,GLL*hh<CR><LF>

\$aaGLL,IIII.IIIx,d,yyyyy.yyyx,d,hhmmss.s,s,a*hh<CR><LF>

Field	Description
aa	Talker ID
IIII.IIIx	Latitude
d	N S
ууууу.ууух	Longitude
d	E W
hhmmss.s	Hours, minutes, seconds, sub-seconds of position in UTC.
s	Status:
	A = data valid V = data invalid
а	Mode indicator:
	N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR M = manual mode
hh	checksum

GSA - GPS DOP and Active Satellites

The GSA messages indicate the GNSS receiver's operating mode and lists the satellites used for navigation and the DOP values of the position solution.

This message is output automatically if selected in the NMEA message output mask. It can also queried using the command \$GPGPQ,GSA*hh<CR><LF>

aaGSA, m, s, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, xp.px, xh.h.x, xv.vx, h*hh<CR><LF>

Field	Description
aa	Talker ID
m	Operating Mode:
	M = Manual, forced to either 2D or 3D A = Automatic, allowed to switch between 2D and 3D
S	Navigation mode:
	1 = Fix not available 2 = 2D fix 3 = 3D fix D
n1 n12	Satellite ID's used in solution (position fix), null if unused. Refer to GNSS identification table for NMEA v4.1
X.X	Position dilution of precision (PDOP)
X.X	Horizontal dilution of precision (HDOP)
X.X	Vertical dilution of precision (VDOP)
h	GNSS System ID
	1 - GPS (GP) 2 - GLONASS (GL) 3 - GALILEO (GA) 4 - BeiDou (GB) 5 - QZSS (GQ)
hh	Checksum

GSV - GPS Satellites in View

The GSV message identifies the GNSS satellites in view, including their PRN number, elevation, azimuth and SNR value. Each message contains data for four satellites. Second and third messages are sent when more than 4 satellites are in view. Fields #1 and #2 indicate the total number of messages being sent and the number of each message respectively.

This message is output automatically if selected in the NMEA message output mask. It can also be queried using the command \$GPGPQ,GSV*hh<CR><LF>

\$aaGSV,t,m,ts,n1,e1,aa1,s1,n2,e2,aa2,s2,n3,e3,aa3,s3,n4,e4,aa4,s4,h*hh<CR><LF>

Field	Description
aa	Talker ID
t	Total number of messages
m	Message number
ts	Total number of satellites in view
n1 n4	Satellite ID's. Refer to GNSS identification table for NMEA v4.1
e1e4	Elevation in degrees (90 degrees max)
aa1 aa4	Azimuth in degrees true (000 - 359)
s1s4	SNR (00 - 99 dB-Hz)
h	Signal ID. Refer to GNSS identification table for NMEA v4.1
hh	Checksum

RMC - Recommended Minimum Specific GPS/Transit Data

The RMC message contains the time, date, position, course, and speed data provided by the GNSS navigation receiver. A checksum is mandatory for this message and the transmission interval may not exceed 2 seconds. All data fields must be provided unless the data is temporarily unavailable. Null fields may be used when data is temporarily unavailable. This message is output automatically if selected in the NMEA message output mask.

\$aaRMC,hhmmss.s,s,llll.lllx,d,yyyyy.yyyx,d,xs.sx,xc.cx,ddmmyy,xm.vx,d,a*hh<CR><LF>

Field Description aa Talker ID hhmmss.s Hours, minutes, seconds, sub-seconds of position in UTC. s Status (see Section 3.1 for more info): A = data valid V = data invalid IIII.IIIIx Latitude d N S yyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR M = manual mode		
hhmmss.s Hours, minutes, seconds, sub-seconds of position in UTC. s Status (see Section 3.1 for more info): A = data valid V = data invalid IIII.IIIx Latitude d N S yyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	Field	Description
Status (see Section 3.1 for more info): A = data valid V = data invalid IIII.IIIx Latitude d N S yyyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	aa	Talker ID
A = data valid V = data invalid IIII.IIIX Latitude d N S yyyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	hhmmss.s	Hours, minutes, seconds, sub-seconds of position in UTC.
d N S yyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	S	A = data valid
yyyyy,yyyx Longitude d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	IIII.IIIx	Latitude
d E W xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	d	N S
xs.sx Speed Over Ground in Knots xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	ууууу,ууух	Longitude
xc.cx Course Over Ground in Degrees True ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	d	E W
ddmmyy Day, month, year of date xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	XS.SX	Speed Over Ground in Knots
xm.vx Magnetic Variation in Degrees d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	XC.CX	Course Over Ground in Degrees True
d E W a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	ddmmyy	Day, month, year of date
a Mode indicator: N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	xm.vx	Magnetic Variation in Degrees
N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	d	E W
A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR	а	Mode indicator:
		A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR
hh Checksum (mandatory for RMC)	hh	Checksum (mandatory for RMC)

VTG - Track Made Good and Ground Speed

The VTG message conveys the actual track made good (COG) and the speed relative to the ground (SOG).

This message is output automatically if selected in the NMEA message output mask.

\$aaVTG,xc.cx,T,xc.cx,M,xs.sx,N,xs.sx,K,a*hh<CR><LF>

Field	Description
aa	Talker ID
XC.CX	Course Over Ground in Degrees True
XC.CX	Course Over Ground in Degrees Magnetic
XS.SX	Speed Over Ground in knots
XS.SX	Speed Over Ground in km/hr
а	Mode indicator:
	N = data not valid A = autonomous mode D = differential/SBAS-aided mode F = RTK (float) R = RTK (fixed) P = RTX or PPP E = estimated/DR M = manual mode
hh	Checksum

ZDA - Time & Date

The ZDA message contains UTC time, the day, the month, the year and the local time zone.

This message is output automatically if selected in the NMEA message output mask.

\$aaZDA,hhmmss.s,dd,mm,yyyy,zh,zm*hh<CR><LF>

Field	Description
aa	Talker ID
hhmmss.s	Hours, minutes, seconds, sub-seconds of position in UTC.
dd	Day (01 to 31)
mm	Month (01 to 12)
уууу	Year
zh	Local Zone Hour, offset from UTC to obtain Local time
zm	Local Zone Minute
hh	Checksum

CAUTION - If UTC offset is not available, time output will be in GPS time until the UTC offset value is collected from the GPS satellites. When the offset becomes available, the time will update to UTC time.

NOTE - GPS time can be used as a time tag for the 1PPS. The ZDA message comes out 100-500 msec after the PPS.

CR - Configure Receiver

Use this sentence to query or set receiver configuration information.

The Query sentence format is:

\$PTNLQCR*hh<CR><LF>

The Response to query or Set sentence format is:

\$PTNLaCR,x.x,x.x,x.x,x.x,x.x,a,a,a,a,*hh<CR><LF>

Field	Description
а	Mode (S = set; R = response)
X.X	Signal Level Mask (default = 0.6 AMU)
X.X	Elevation mask in degrees (default = 5 degrees)
X.X	PDOP mask (default = 12)
X.X	PDOP switch (default = 6) (unused in Onix)
X.X	Max Oscillator Offset (unused in Onix)
а	Constellation Mode, default is 0
	0-AUTO
а	Dynamics, default is 0
	1-Land
	2-Sea 3-Air
а	Reserved, set to 1.
а	SBAS mode, default is 0

Field	Description
а	Bitmap of Constellation track/use mask:
	Bit 0 - GPS L1C Bit 1 - GPS L2 (Not supported, for future use) Bit 2 - GPS L5 Bit 3 - Reserved Bit 4 - Glonass G1 Bit 5 - Glonass G2 (Not supported, for future use) Bit 6,7 - Reserved Bit 8 - SBAS Bit 9 - Reserved Bit 10 - Reserved Bit 11 - Reserved Bit 12 - Beidou B1 Bit 13 - Beidou B2i (Not supported, for future use) Bit 14 - Beidou B2a Bit 15 - Reserved Bit 16 - Galileo E1 Bit 17 - Galileo E5a Bit 18 - Galileo E5b (Not supported, for future use) Bit 19 - Galileo E6 (Not supported, for future use) Bit 20 - Reserved Bit 21 - QZSS L1C Bit 22 - QZSS L5 Bit 24 - Reserved Bit 25 - Reserved Bit 25 - Reserved Bit 26 - Navic L5 Bit 27 - Reserved Bit 28 - Reserved Bit 29-31 - Reserved
а	Jamming enable/disable (1 default):
	0 - disable 1 - enable
	In Acutime 720 Smart antenna, it is set to 1 and not configurable.
hh	Checksum

The Response to set format is:

\$PTNLRCR,a*hh<CR><LF>

Field	Description
а	Status (A - success; V - failure)
hh	Checksum

PT - Serial Port Configuration

Use this sentence to configure the current serial port. The Query sentence format is:

\$PTNLQPT*hh<CR><LF>

The Response sentence to query or Set sentence format is:

\$PTNLa**PT**,xxxxxx,a,a,a*hh<CR><LF>

In the case of Set, the Response message with new parameters is sent using the old parameters first, and then the switch to the new parameters is made.

If the switch fails for any reason, an NMEA error response is sent. If the switch succeeds, no additional response is sent.

Field	Description
а	Mode (S = set, R = response)
xxxxxx	Baud rate (9600, 19200, 38400, 57600,115200, 230400, 460800, 926100), Default baud rate is 115200
а	Number of data bits (7 or 8)
а	Parity (N = None, O = Odd, E = Even)
а	Number of stop bits (1 or 2)
h	Input protocol. This is a hex bit-map but only one protocol in use. This field may not be 0.
	Bit 0: NONE (TBD) Bit 1: TSIP Bit 2: NMEA
h	Output protocol. This is a hex bit-map (same as input).
	Bit 0: NONE (TBD) Bit 1: TSIP Bit 2: NMEA
hh	Checksum

The Response sentence to set format is:

\$PTNLRPT,a*hh<CR><LF>

Field	Description
а	Status (A - success; V - failure)
hh	Checksum

VR - Version

This sentence may be issued by the user to get application version information.

The Query sentence format is:

\$PTNLQVR,a*hh<CR><LF>

Field	Description	
а	Component ID for which to query the version:	
	S - system (application firmware) version	
	H - hardware info	
hh	Checksum	

The Response to query sentence format for all components versions except the hardware (H). **\$PTNLRVR**,a,a..a,b...b,xx,xx,xxxx*hh<CR><LF>

Application firmware

Field	Description		
а	Component ID (same as in Query format)		
aa	Component name (variable length character string)		
bb	Version number in the format xx.yy.zz where		
	xx - major version number (2 digits, prepend 0 if the number is less than 10) yy - minor version number (2 digits, prepend 0 if the number is less than 10) zz - build version number (2 digits, prepend 0 if the number is less than 10)		
	NOTE - There must be a period character separating the major/minor and minor/build numbers.		
XX	Month (1-12)		
xx	Day (1-31)		
XXXX	Year		
hh	Checksum		

The Response to query sentence format for the Hardware version (H)information is:

\$PTNLRVR,H,xxxx,a..a,xxxxxxxx,xx,xx,xxx,xx*hh<CR><LF>

Field	Description	
xxxx	Hardware code	
aa	Hardware ID (variable length character string)	
xxxxxxx	Serial number	
XX	Build month (1-12)	
XX	Build day (1-31)	
XXXX	Build year	
XX	Build hour (0-23)	
hh	Checksum	

NM - NMEA Configuration

This sentence may be issued by the user to configure NMEA message output. The Query sentence format is:

\$PTNLQNM, x*hh<CR><LF>

Field	Description	
Х	Port, default is current port if field is left null.	
	0 - Port A	
	1 - Port B	
	255 - Current port	

The Response sentence to query or Set sentence format is:

\$PTNLaNM, hhhhhhhhh, x.x, x, x*hh<CR><LF>

Field	Description	
а	Mode (S = set; R = response)	
hhhhhhhh	Message Flags (32 bits maximum), one bit for each message:	
	Bit 0 - GGA Bit 1 - GLL Bit 2 - VTG Bit 3 - GSV Bit 4 - GSA Bit 5 - ZDA Bits 6,7 - Reserved Bit 8 - RMC Default is 0x3D	
X.X	Automatic Report Interval (1 - 255 seconds), default is 1 if field is left null. Default is 1 second	
х	Position fix data source.	
	This field indicates the source of fix data in messages containing position fix information (GGA, RMC).	
	255 - position fix data source not supported (fix data always comes from DR for DR-capable products or from GNSS for non-DR products)	
	This is output by default. Users can set any values or null.	

Field	Description	
х	Port, default is current port if field is left null.	
	0 - Port A	
	1 - Port B	
	255 - Current port	
hh	Checksum	

The Response sentence to set format is:

\$PTNLRNM, a*hh<CR><LF>

Field	Description
а	Status (A - success; V - failure)
hh	Checksum

Exception behavior

When no position fix is available, some of the data fields in the NMEA messages will be blank. A blank field has no characters between the commas.

Interruption of GNSS signal

If the GNSS signal is interrupted temporarily, the NMEA will continue to be output according to the user-specified message list and output rate. Position and velocity fields will be blank until the next fix, but most other fields will be filled.

GNSS identification table for NMEA v4.1

System	Satellite ID	Signal ID	Signal channel
GPS	1-32 for GPS 33-64 for SBAS 65-99 undefined	0 1 2 3 4 5 6 7 8 9-F	All signals L1 (C/A) L1 P(Y) L1 M L2 P(Y) L2C-M L2C-L L5-I L5-Q Reserved
GLONASS	33-64 for SBAS 65-99 for GLONASS	0 1 2 3 4 5-F	All signals G1 C/A G1 P G2 C/A GLONASS (M) G2 P Reserved
GALILEO	1-36 for Galileo 37-64 for Galileo SBAS	0 1 2 3 4 5 6 7 8-F	All signals E5a E5b E5 a+b E6-A E6-BC L1-A L1-BC Reserved
BeiDou	1 - 64 for Beidou 65 - 99 undefined	0 1 2 3 4 5 6 7 8 9 A B C D-F	All signals B1I B1Q B1C B1A B2-a B2-b B2 a+b B3I B3Q B3A B2I B2Q Reserved

System	Satellite ID	Signal ID	Signal channel
QZSS	1-10 for QZSS	0	All signals
	55-63 for QZSS SBAS	1	L1 C/A
		2	L1C (D)
	64 - 99 undefined	3	L1C (P)
		4	LIS
		5	L2C-M
		6	L2C-L
		7	L5-I
		8	L5-Q
		9	L6D
		A	L6E
		B-F	Reserved

Setting up the Acutime Smart antenna

Protempis recommends that you install the Protempis VTS software before setting up the Acutime 720 smart antenna, as this will enable you to monitor the acquisition of satellites once you start up the multi-GNSS antenna.

A starter kit is available for testing, evaluation, and engineering purposes. This section describes the components of the starter kit, and how to set it up.

NOTE - The VTS software and the starter kit should NOT be considered for the commercial service grade product, but only for lab testing, lab evaluation, and engineering purposes.

NOTE - Protempis does not have any responsibility for any kind of abnormal behaviors during the commercial grade service with the VTS software and/or the starter kit.

The hardware integration is described in Integration.

- Smart Antenna Placement
- System requirements
- Installing and using the software
- Acutime 720 starter kit
- Setting up the starter kit
- Starter kit components

Smart Antenna Placement

Sky-Visibility

GNSS signals can only be received on a direct line of sight between Smart antenna and satellite. The Smart antenna should see as much as possible of the total sky. Seen from the northern hemisphere of the earth, more satellites will be visible in the southern direction rather than in northern direction. The Smart antenna should therefore have open view to the southern sky. If there are obstacles at the installation site, the Smart antenna should be placed south of the obstacles, preferably, in order not to block sky-view to the south.

If the installation site is in the southern hemisphere of the earth, then the statements above are reversed - more satellites will be visible in the northern direction. Near to the equator, it doesn't matter.

Partial sky visibility causes often poor DOP values due to the geometry of the visible satellites in the sky. If the Smart antenna can only see a small area of the sky, the DOP has a high degree of uncertainty and will be worse compared to a condition with better geometric distribution. It may happen that a Smart antenna is seeing 6 satellites, all close together, and still get a much worse DOP than a Smart antenna which sees 4 satellites, but all in different corners of the sky. The Smart antenna's DOP filter rejects fixes with high DOP (high uncertainty), therefore it can take longer to get the first acceptable fix if sky visibility is partly obstructed.

Multipath-reflections

Multipath occurs when the GNSS signals are reflected by objects, such as metallic surfaces, walls and shielded glass for example. The Smart antenna should not be placed near a wall, window or other large vertical objects if it can be avoided.

Jamming

Jamming occurs when the Smart antenna function is disturbed by external RF sources that interfere with GNSS signals or saturate the antenna LNA or receiver front-end. A good indicator to detect jamming is switching off all other equipment except the GNSS. Watch the satellite signal levels in this condition. Then switch on other equipment and see if the signal levels go down. A drop of signal levels indicates interference to GNSS from the other equipment. This method cannot, however, detect all possible kinds of jamming. Spurious events are hard to catch. Low frequency fields, like 50 Hz, are unlikely to jam the Smart antenna. Broadband sparks are a potential source of spurious jamming. There's no general installation rule or specification though, because the effect of jamming highly depends on the nature of the jamming signal and there are uncountable many variations possible, so that it's not possible to standardize a test scenario.

Ground plane

A metal plate or surface under the antenna can block signal reflections from below. This is a good method to mitigate reflections, if the antenna is mounted on high masts or other elevated sites.

System requirements

Hardware

- For evaluation or engineering purposes:
 - The Protempis Acutime 720 Dual-band multi-GNSS smart antenna starter kit, see later in this chapter.
- For permanent installation:
 - Protempis Acutime 720 Dual-band multi-GNSS smart antenna
 - Interface cable with DB-25 connector
 - Universal Interface Module

Computer

An office computer powered by a version of the Microsoft® Windows® operating system (Windows XP or later).

System software

- Protempis VTS software. This is used to monitor the Acutime 720 antenna's performance and to assist system integrators in developing a software interface for the smart antenna. The software is compatible with the Windows operating systems. See Protempis VTS software.
- Protempis Standard Interface Protocol (TSIP). This consists of command packets and report packets. See Appendix A Protempis Standard Interface Protocol, page 1.
- NMEA-0183. See Appendix B NMEA 0183 Protocol.

Installing and using the software

All software programs for the Acutime 720 starter kit are available online from the Protempis website at http://www.Protempis.com/Timing/Acutime-360.aspx. These programs enable you to monitor the Acutime 720 antenna and change its settings.

TIP - Install and set up the monitor program before turning on the Acutime 720 antenna—this allows you to watch the timing process, from start up to fully functioning.

Protempis VTS software

CAUTION - Use only the Protempis VTS software with this product. Previous software versions may not be compatible.

To install the Protempis VTS software from the website:

1. Go to http://www.Protempis.com/timing/acutime-360.aspx and then select **Support for TGS / Installation Files**.

- 2. Select and then download Protempis VTS.exe to the computer's hard drive.
- 3. To run the application, double-click the file. The **Protempis VTS** screen appears.
- To specify the communications port and protocol for your office computer, right-click in the bottom right of the Protempis VTS screen and then select the required COM port and settings.
- Connect the Acutime 720 antenna to the Universal Interface Module (UIM) using the provided antenna interface cable. Connect the 12-pin connector to the antenna, and the DB-25 connector to the UIM.
- 6. Connect one end of the USB cable to the USB port of the UIM.
- 7. Connect the other end of the cable to the USB port of your computer.
- 8. Turn on the DC power source or plug in the AC/DC converter and then turn on the power.

The Tx and Rx in the lower left of the status bar indicate the following:

- If the Tx blinks, the computer is transmitting commands to the receiver.
- If the Rx blinks, the computer is receiving reports from the receiver.
- 9. The Acutime 720 antenna automatically begins its self-survey. When this is complete and the receiver achieves a position fix, the following information appears:
 - position
 - -time
 - -satellites tracked
 - -GPS receiver status

NOTE - The receiver sends a health report every few seconds, even if satellites are not being tracked.

Data fields

If the Protempis VTS software displays a question mark (?) in a data field, the receiver has not reported a status for this field. If the question mark stays in place, the Acutime 720 antenna may not be communicating with the computer. Check the interface cable connections and verify the serial port selection and settings.

If the communication fails, contact the Protempis Technical Assistance Center or local reseller..

TSIP

The Protempis Standard Interface Protocol (TSIP) consists of command packets and report packets, see Appendix A Protempis Standard Interface Protocol.

The TSIP is installed by factory default.

NMEA-0813

To convert to the NMEA protocol, refer to and use the Protempis VTS software for serial port protocol, Input/Output, message type output, and baud rate configuration.

Acutime 720 starter kit

Acutime 720 Smart Antenna

Universal Interface Module (RS-422 to USB converter)

Power converter (AC to 24 VDC)

Power pin adapters

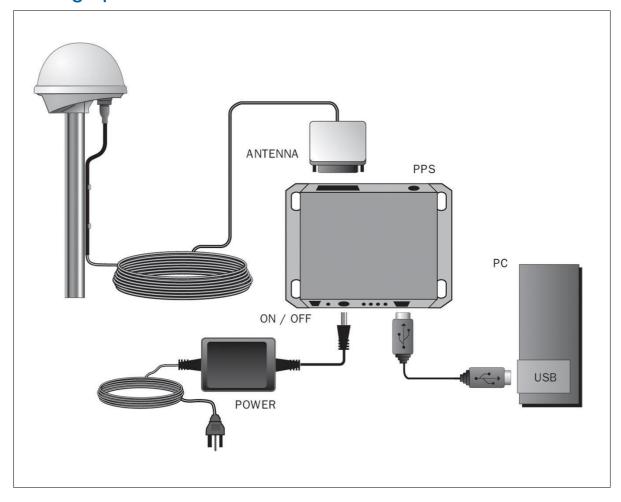
USB cable

30 m (100 feet) of interface cable with DB-25 connector

Universal Interface Module (UIM)

The UIM that is included with the starter kit makes it easy to evaluate and develop software when it is connected to the Acutime 720 antenna. It has a Type 2 USB interface to the Acutime 720 antenna that is compatible with most computers.

- Network power (+7 to +36 VDC) is supplied through the power connector on the front of the module.
- The USB connector and interface cable allows for easy connection to a PC USB port.
 - **NOTE** The Acutime 720 requires power separate from the USB.
- The motherboard has a switching power supply, which converts the prime voltage input to the 24 V that is required to power the receiver over most available cable lengths.
- Connect the output device to the 1 PPS connector on the rear of the unit.



Power converter (AC/DC)

The AC/DC power converter provides an alternative power source for the interface unit and enables you to run the module from network power.

It converts 110 or 220 VAC to a regulated +24 VDC that is compatible with the UIM. The AC/DC power converter output cable is terminated with a standard DC power connector that is compatible with the power connector on the metal enclosure.

Setting up the starter kit

- 1. Mount the Acutime 720 antenna on a 1" OD marine pipe or 3/4" ID pipe, with 14 threads per inch.
- 2. Connect the antenna cable to the Acutime 720 antenna. Allow for the cable to maintain a "drip-loop" to prevent water intrusion and to allow for flex on the antenna to cable connector.
- 3. Place the Acutime 720 antenna so that it has the fullest possible view of the sky to ensure that the maximum number of satellites is available.
- 4. Use the DB-25 connector to connect the antenna cable to the rear of the UIM.

CAUTION - Be careful not to damage the cable. Take care to avoid sharp bends or kinks in the cable, hot surfaces (for example, exhaust manifolds or stacks), rotating or reciprocating equipment, sharp or abrasive surfaces, door and window jambs, routing near high EMI / EMF (Electro-Magnetic Induction / Field) transformers or equipment, and corrosive fluids or gases.

5. When using the TSIP protocol, connect one end of the USB interface cable to the USB port of the interface unit. Connect the other end of the cable to the USB port on a computer.

NOTE - The antenna supports the TSIP or NMEA protocols. Dual ports support either the input/output of TSIP messages or the output of NMEA messages.

- 6. To connect the power connector to the UIM, do one of the following:
 - Use the DC power cable. Connect the terminated end of the power cable to the power connector on the UIM. Connect the red lead to DC positive voltage (+12 VDC to +24 VDC) and the black power lead to DC ground. The yellow wire is not used.
 - Use the AC/DC power converter. Connect the output cable of the converter to the power connector on the UIM. Use the appropriate 3-pin power adapters to connect the converter to mains power (110 VAC or 220 VAC).
- 7. Switch on the DC power source or turn on the mains power.

To integrate the multi-GNSS smart antenna, into your system, see Integration.

Starter kit components

The Protempis[®] Acutime 720 antenna is available as part of the starter kit, or as an individual item. The starter kit includes all the components necessary to quickly test and integrate the receiver.

Product	Part Number
Acutime 720 dual-band multi-GNSS Smart antenna	121224-00
100' Acutime cable	60155 (included in Starter kit)
Acutime 720 Universal Interface Module	Available with SK only
AC/DC power supply module	Available with SK only
Interface cable (USB/USB)	Available with SK only

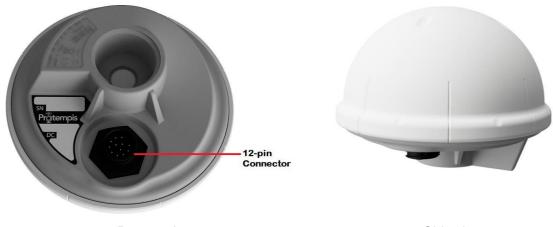
NOTE - Part numbers are subject to change. Confirm part numbers with your Protempis representative when placing your order.

Integration

The setup procedures for the Protempis[®] the Acutime 720 dual-band multi-GNSS Smart antenna are described in Setting up the Acutime Smart antenna.

This chapter describes the hardware components, to assist you when you integrate the Acutime 720 antenna into a system.

To integrate the Acutime 720 dual-band multi-GNSS Smart antenna into your system you must:


- · Connect to a standard serial interface port on the host system
- Design a circuit to read the electrical 1PPS
- Develop a software interface

The setup procedures for the Acutime 720 dual-band multi-GNSS Smart antenna starter kit are described in Setting up the Acutime Smart antenna.

GNSS Error Correction: ITU-T technical paper GSTR-GNSS suggested different error correction mechanisms for various physical and environmental condition that may impede signal reception and processing. Protempis recommends that the those guideline are followed for the implementation of error correction mechanisms.

- Acutime Smart antenna
- Interface cables
- Power requirements

Acutime Smart antenna

Bottom view Side view

Interface cables

The Acutime 720 smart antenna's interface cable is twisted-pair technology, 22 American Wire Gauge (AWG), 6 pair/12 conductors, shielded, and protected with a PVC-U/V outer sheath.

The interface cables are available in the following standard lengths:

- 15 m (50 feet)
- 30 m (100 feet)
- 60 m (200 feet)
- 120 m (400 feet)

By following the RS-422 standard, also known as TIA/EIA-422, the maximum cable length can be up to 1000 m (3280 feet)with a data rate of 115,200 Kbit/s.

For custom-length cables of up to 550 m (1800 feet), contact Protempis.

All cables are terminated on the antenna end.

Power requirements

The Protempis[®] Acutime 720 is designed for static timing applications and requires a nominal +12 VDC to +24 VDC input (a range of +7 VDC to +36 VDC is possible). You can apply power to the Universal Interface Monitor using one of two options: the DC power cable, or the AC/DC power converter.

TIP - Some voltage drop will occur over the cable run. If feed voltage is limited to +7 VDC, the cable length is limited to 9 m (30 feet). When the cable is 30 m (100 feet) or longer, the feed voltage must be at least +12 VDC. Protempis recommends +24 VDC for most runs.

The red wire (Acutime 720 pin 1) and the black wire (Acutime 720 pin 9) on the interface cable support power and ground connections, respectively. The Acutime 720 smart antenna features a linear power supply, which supports +7 to +36 VDC. The antenna is protected against reverse polarity and brief over voltage conditions, however, extended over-voltage conditions may cause permanent damage.

Power consumption of the Acutime 720 smart antenna is less than 80 mA at 12 VDC.

Pulse-Per-Second (PPS)

The Acutime 720 smart antenna provides a 10 ms wide, RS-422, Pulse-Per-Second (PPS) on antenna connector pins 11 and 12. The pulse is sent once per second and the leading edge of the pulse is synchronized to UTC, GPS, or GNSS time.

The pulse shape is affected by the distributed capacitance of the attached cabling and input circuit. The pulse's trailing edge should not be used for timing applications. An accurate timing pulse is available only when the Acutime 720 smart antenna is operating in the static.

Over-determined Clock Mode with a timing accuracy of 5 nanoseconds (one sigma) to UTC, GPS, or GNSS time under the 360 degree open sky view.

The PPS output can be programmed to provide an even-second output using TSIP packet 0x91-03.

Timing pulse connections

The Acutime 720 smart antenna outputs a timing pulse for timing and synchronization applications. The timing pulse is generated using an RS-422 line driver circuit (connector pins 11 and 12). The leading edge of the PPS output pulse is synchronized to UTC. The width of the pulse's leading edge is 20 nanoseconds or less. The exact width and shape of the pulse depends upon the distributed capacitance of the interface cable.

Serial ports

The Acutime 720 smart antenna has two RS-422 communication ports. The functions of these ports (B and A) are described below.

Port B

Port B is the primary serial port for the Acutime 720 smart antenna. Using this port, you can:

- Send commands and receive command responses.
- Query for and receive satellite data (for example, ephemeris, tracking information, and signal levels).
- Receive timing packets that are synchronized with the PPS output.
- Enable TSIP timing packets 0xA1-00(which output automatically after the self-survey has been completed) using command packet 0x91-05.
- Configure Port B to transmit NMEA packets.

The Acutime 720 smart antenna automatically sends a range of satellite data packets on Port B. You may not need these data packets—to disable them, use command packet 0x91-05. This

ensures that only the timing packets are sent. You can also choose to receive the timing packets on Port A, and use Port B to only send commands and receive satellite data.

Port A

Port A serves as a dedicated transmit port for timing packets and is also used by default to receive external event inputs.

You can select NMEA output on port A, with TSIP in / TSIP out on port B.

Event input

The Acutime 720 smart antenna accepts an external event input in the shape of an RS-422 pulse. The external event pulse input is supported on Port A (pins 6 and 7). The Acutime 720 transmits a TSIP time packet in response to the event input. The TSIP packet increments the event count field for each event received. The event time stamp is generated within 500 ns of its arrival at the Acutime 720 interface connector.

NOTE - The event capture feature is design for low frequency events of 1 PPS or longer.

NOTE - When the event input on Port A is enabled the serial receive function on Port A is disabled.